摘要
如何从海量的网上评论数据中,分析得出指导消费者的有用信息,是商品评价研究领域的新课题。本文以电商网站的评论数据为基础,以文本分析技术为工具,建立一套较为完善的情感词库与主体抽取规则,将不规则的评论数据转变成结构化的评价数据,利用模糊数学方法,建立基于情感分析的商品评价模型。研究显示,该评价模型的评价结论,贴合消费者体验,评价效率也得到提高。
How to analyze and draw useful information to guide customer consumption from the massive online comment data is a new topic in the field of commodity evaluation research. Based on the review data of e-commerce website and using text analysis technology as a tool, this paper establishes a set of relatively complete emotional lexicon and subject extraction rules, transforms irregular comment data into structured evaluation data and uses fuzzy mathematics method to establish a commodity evaluation model based on sentiment analysis. The research shows that the evaluation conclusion of the evaluation model is in line with the customer experience and that the evaluation efficiency is also improved.
作者
陈晓玲
褚汉
许钧儒
Chen Xiao-ling;Chu Han;Xu Jun-ru(Anhui University of Finance and Economics, Bengbu Anhui 233030, China)
出处
《铜陵学院学报》
2018年第6期10-12,25,共4页
Journal of Tongling University
基金
安徽省高校人文社科研究重点项目“基于社会体验的社会化广告交互行为研究”(SK2015A220)
关键词
情感分析
主题模型
评价研究
sentiment analysis
topic models
web spider