期刊文献+

基于遗传算法的电容装盘机器人轨迹规划 被引量:2

Trajectory Planning of Capacitor Loading Robot Based on Genetic Algorithm
下载PDF
导出
摘要 目的为了改变电容人工装盘方式,提高电容装盘自动化程度及效率,选用SCARA型机器人代替人工方式,并对其进行轨迹规划,避免运动冲击影响电容装盘稳定性以及精确性。方法首先介绍SCARA机器人的结构和电容装盘过程,然后利用五次非均匀B样条曲线完成轨迹曲线的构造,最后提出带罚函数的遗传算法,以实现时间最优的机器人轨迹规划过程。结果仿真结果表明,机器人装盘时间用时更短,且运动平稳无冲击,验证了算法的有效性。结论该轨迹规划方法能够满足实际生产要求,提高了电容搬运装盘质量及效率。 The paper aims to change the mode of manual capacitor loading and improve the automation degree and efficiency of capacitor loading. SCARA robot was selected to replace the manual mode and carry out trajectory planning to avoid motion impact affecting the stability and accuracy of capacitor loading. The structure of SCARA robot and the process of capacitor loading were introduced, and then the trajectory curve was constructed with five non-uniform b-spline curves. Finally, a genetic algorithm with penalty function was proposed to realize the trajectory planning process of robots with optimal time. The simulation results showed that the robot loading was shorter and the motion was smooth without impact, which verified the effectiveness of the algorithm. The trajectory planning method can meet the actual production requirements and improve the quality and efficiency of capacitor handing and loading.
作者 钟飞 黄振 ZHONG Fei;HUANG Zhen(Hubei University of Technology, Wuhan 430068, China)
机构地区 湖北工业大学
出处 《包装工程》 CAS 北大核心 2019年第9期185-191,共7页 Packaging Engineering
基金 湖北省技术创新专项(重大项目)(2018AAA026)
关键词 电容装盘机器人 轨迹规划 时间最优 带罚函数遗传算法 capacitor loading robot trajectory planning optimal time genetic algorithm with penalty function
  • 相关文献

参考文献9

二级参考文献77

  • 1谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报(自然科学版),2005,36(1):102-107. 被引量:28
  • 2付铁,李金泉,陈恳,丁洪生.一种新型高速码垛机械手的设计与实现[J].北京理工大学学报,2007,27(1):17-20. 被引量:39
  • 3CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 4LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 5GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 6SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 7SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 8SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 9CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 10LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.

共引文献302

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部