期刊文献+

基于自相似性与稀疏表示的超分辨率算法

Super-Resolution Algorithm Based on Self-similarity and Sparse Representation
下载PDF
导出
摘要 目的为了解决当前稀疏表示的超分辨率算法效果依赖参与训练的数据的问题,结合图像的自相似性,提出一种基于自相似性与稀疏表示相结合的超分辨率算法。方法算法利用图像的多维自相似性,构建多维图像金字塔,采用改进的相似块搜索策略,得到对应的高低分辨率图像块作为训练样本,然后对样本进行字典训练,最后根据稀疏表示得到超分辨率图像。结果实验结果显示,文中算法在峰值信噪比(PSNR)和结构相似度(SSIM)上优于其他算法,对于实验图像而言,PSNR平均提升了0.5 dB。结论提出的超分辨率算法未引入外部数据库,具有较好的效果,能够用于超分辨率重建。 The paper aims to propose a super-resolution algorithm based on the self-similarity and sparse representation in combination with the self-similarity of images to solve the problem that the effect of the current sparse representation super-resolution algorithm depends on the training data. In the algorithm, the multi-dimensional self-similarity of images was used to construct amulti-dimensional image pyramid, and the improved similarity block search strategy was used to obtain the high and low resolution image blocks as training samples. The dictionary training was carried out to the samples. Finally, the super-resolution image was obtained according to sparse representation. The experimental results showed that the proposed algorithm was superior to other algorithms in peak signal to noise ratio (PSNR) and structural similarity (SSIM). For the experimental images, the average PSNR was increased by 0.5 dB. The proposed super-resolution algorithm does not need external database and has a good effect. It can be used for super-resolution reconstruction.
作者 李治贤 谌贵辉 李忠兵 LI Zhi-xian;CHEN Gui-hui;LI Zhong-bing(Southwest Petroleum University, Chengdu 610500, China)
机构地区 西南石油大学
出处 《包装工程》 CAS 北大核心 2019年第9期231-237,共7页 Packaging Engineering
基金 南充市科技战略合作项目(18SXHZ0041) 南充市科技战略合作项目(NC17SY4001) 西南石油大学科研"启航计划"(2015QHZ027)
关键词 自相似性 图像金字塔 字典训练 稀疏表示 self-similarity image pyramid dictionary training sparse representation
  • 相关文献

参考文献5

二级参考文献43

  • 1沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 2Huang X, Zhang L. An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Fea- tures for the Classification of High-Resolution Re- motely Sensed Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257- 272.
  • 3Dong W, Zhang L, Shi G, et al. Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization [J]. IEEE Transactions on Image Processing, 2011, 20 (7) : 1 838-1 857.
  • 4Harris J. Diffraction and Resolving Power[J]. Journal of the Optical Society of America, 1964, 54(7): 931-936.
  • 5Irani M, Peleg S. Improving Resolution by Image Registration [J]. CVGIP: Graphical models and Image Processing, 1991, 53(3) : 231-239.
  • 6Stark H, Oskoui P. High-Resolution Image Recov- ery from Image-Plane Arrays, Using Convex Pro- jectiong[J]. Journal of the Optical Society of A- mericaA, 1989, 6(11): 1 715-1 726.
  • 7Tropp J A. Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise [J]. IEEE Transactions on Information Theory, 2006, 52(3): 1 030-1 051.
  • 8Yang J, Wright J, Huang T, et al. Image Super- Resolution as Sparse Representation of Raw Image Patches [C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, 2008.
  • 9Aharon M, Elad M, Bruckstein A. K-SVD: An Al- gorithm for Designing Overcomplete Dictionaries for Sparse Representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4 311-4 322.
  • 10Needell D, Vershynin R. Signal Recovery From In- complete and Inaccurate Measurements Via Regular- ized Orthogonal Matching Pursuit [J]. IEEE Jour- nal of Selected Topics in Signal Processing, 2010, 4(2) : 310-316.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部