期刊文献+

随机SIS流行病模型全局正解的渐近行为 被引量:1

Asymptotic Behavior of Global Positive Solution to a Stochastic SIS Epidemic Model
下载PDF
导出
摘要 讨论了随机SIS流行病模型全局正解的渐近行为。首先证明了模型解的全局正性和有界性;其次建立Lyapunov函数,利用Ito’s公式和随机微分方程理论研究了当R_0<1时,该模型无病平衡点的随机稳定性,当R_0>1时,该模型的解在其确定性模型地方病平衡点处的渐近行为;最后给出数值仿真验证结论,揭示随机SIS流行病模型的现实意义。 Asymptotic behavior of global positive solution to a stochastic SIS epidemic model was discussed. At first, the global positive and boundness of the solution was proved. Then, we studied the stochastic stability of the disease-free equilibrium when R0<1 and the asymptotic behavior of the solution around the endemic equilibrium of the deterministic model when R0>1 by Lyapunov function ,Ito's formula and the theory of stochastic differential equations. Finally, numerical simulations were carried out to support our results and reveal the realistic meaning of the stochastic SIS epidemic model.
作者 王素霞 王鑫鑫 董玲珍 WANG Suxia;WANG Xinxin;DONG Lingzhen(College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《太原理工大学学报》 CAS 北大核心 2019年第3期400-406,共7页 Journal of Taiyuan University of Technology
基金 教育部科学技术研究重要资助项目(210030) 山西省自然科学基金资助项目(2013011002-3)
关键词 随机SIS模型 BROWNIAN运动 Ito’s公式 渐近状态 LYAPUNOV函数 stochastic SIS model brownian motion Ito's formula asymptotic behavior lyapunov function
  • 相关文献

参考文献1

二级参考文献7

  • 1Kermack W O, McKendrick A G. McKendrick A G.Contributions to the mathematical theory of epidemics[J]. Proc. R. Soc, 1927, A115:700-721.
  • 2Anderson R M, May R M. Population biology of infectious diseases [J]. Nature, 1979, 280(5721):361-367.
  • 3Jiang D Q, Shi N Z. The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. JMath Anal Appl, 2005, 303(1):164-172.
  • 4Yu J J, Jiang D Q, Shi N Z. Global stability of two-group SIR model with random perturbation[J]. J MathAnal Appl, 2009, 360(1):235-224.
  • 5Jiang D Q, Yu J J, Ji C Y, Shi N Z. Asymptotic behavior of global positive solution to a stochastic SIRmodel [J]. Math. Comput Modeling, 2011,54(1-2):221-232.
  • 6李宽国,刘广菊,陶松涛,丁光涛,方立铭.研究SIR传染病数学模型的Lagrange-Noether方法[J].生物数学学报,2011,26(3):435-440. 被引量:2
  • 7叶志勇,豆中丽,马文文,周锋.具有种群Logistic增长的SIR模型的稳定性和Hopf分支[J].生物数学学报,2012,27(2):233-240. 被引量:2

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部