摘要
为了选取合适材料的球面轴承,利用有限元多物理场耦合仿真平台对多自由度永磁电机球面轴承进行有限元位移、应力应变及剪切应力等弹性变形分析,使其更具有实际意义。选取尼龙、橡胶、塑料等3种不同弹性模量、泊松系数的轴承材料,探讨3种材料对球面轴承力学性能的影响规律。使用最优良的材料,并研究考虑黏温黏压下的不同黏度以及不同偏心率、转速对球面轴承力学性能的影响。结果表明:优选塑料为球面轴承的定子壳材料;润滑油黏度随着温度的升高而降低,油膜压力及厚度也降低;偏心率及转速的增大,使得球面轴承位移、应力应变及剪切应力也增大。
In order to select spherical bearings with suitable materials, the finite element multi-physical field coupling simulation platform is used to analyze the elastic deformation of spherical bearings of multi-degree-of-freedom permanent magnet motors, such as finite element displacement, stress strain and shear stress, which makes it more practical. Three kinds of bearing materials with different elastic modulus and Poisson coefficient, such as nylon, rubber, and plastic, are selected, and the influence of three kinds of materials on the mechanical properties of spherical bearings is discussed. Select the best material and the effects of viscosity, eccentricity and rotational speed on the mechanical properties of spherical bearings under viscous temperature and pressure are studied. The results show that plastic is the best material for stator shell of spherical bearing. The viscosity of lubricating oil decreases with the increase of temperature, and the oil film pressure and thickness also decrease. With the increase of eccentricity and rotational speed, the displacement, stress and strain and shear stress of spherical bearings also increase.
作者
李争
陈晴
王蕾永
岳非弘
杨凯
王群京
LI Zheng;CHEN Qing;WANG I^iyong;YUE Feihong;YANG Kai;WANG Qunjing(School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 , China;National Engineering Laboratory of Energy-saving Motor & Control Technique, Anhui University, Hefei 230601 , China)
出处
《机械设计与研究》
CSCD
北大核心
2019年第2期117-122,共6页
Machine Design And Research
基金
国家自然科学基金(51577048
51877070
51637001)
河北省自然科学基金(E2018208155)资助项目
河北省留学人员科技活动项目择优资助项目(C2015003044)
河北省高等学校科学技术研究项目(ZD2018228)
高节能电机及控制技术国家地方联合工程实验室开放课题(KFKT201804)
关键词
球面轴承
有限元法
黏温黏压
弹性变形
spherical bearing
finite element method
viscous pressure and viscous temperature
elastic deformation