摘要
近年来大规模开放在线课程获得了较为广泛的关注。由于学习者学习方式不合理使得学习兴趣下降,学习效果不佳,MOOCs辍学率很高,针对这一问题,从学习者学习活动日志中自动抽取一段时间内连续特征,以学习者行为特征为自变量,建立MOOCs辍学预测模型。在KDD Cup 2015数据集上的实验表明,使用基于卷积神经网络的长短期记忆CNN_LSTM辍学预测模型,能够帮助MOOCs课程教师和设计者追踪课程学习者在不同时间步长的学习状态,从而动态监控不同阶段的辍学行为,模型的预测准确率高,这将为教师改进教学方法提供更合理的指导和建议。
In recent years,massive open online courses (MOOCs) have received extensive attention.Due to the unreasonable learning styles of learners,their interest in learning is declining and some learning effect is not good,so the dropout rate of MOOCs is very high.In order to solve this problem,we automatically extract continuous features over a period of time from learners' learning activity logs,and establish a MOOCs dropout prediction model by taking learners' behavior features as independent variables.Experiments on the KDD Cup 2015 dataset show that the dropout rate prediction model in the long short-term memory in the convolutional neural network (CNN_LSTM) can help MOOCs curriculum teachers and designers track the learning states of course learners at different phases,and dynamically monitor the dropout behavior of different stages.The prediction accuracy of the model is high,so it can provide teachers with more reasonable guidance and advice on improving their teaching methods.
作者
孙霞
吴楠楠
张蕾
陈静
冯筠
SUN Xia;WU Nan-nan;ZHANG Lei;CHEN Jing;FENG Jun(College of Information Science and Technology,Northwest University,Xi'an 710127,China)
出处
《计算机工程与科学》
CSCD
北大核心
2019年第5期893-899,共7页
Computer Engineering & Science
基金
陕西省天地网技术重点实验室开放课题基金
陕西省留学人员科技活动择优资助项目(202160002)
关键词
大规模开放式在线课程
辍学预测
时间序列预测
长短期记忆
卷积神经网络
massive open online courses (MOOCs)
dropout prediction
time series prediction
long short-term memory
convolutional neural network(CNN)