期刊文献+

人工鱼群与遗传混合算法在无人艇路径规划中的应用 被引量:9

A hybrid algorithm of artificial fish swarm and genetic algorithm and its application in collision avoidance of unmanned surface vessels
下载PDF
导出
摘要 为了使水环境监测无人艇在监测和采集水样时能有效躲避静态障碍物,且以最优或接近最优的路径行进,提出了一种变步长和变视野的自适应人工鱼群算法与改进遗传算法混合的策略,在人工鱼完成觅食、追尾、聚群等行为后,进行遗传算法的操作。通过指数函数型衰减函数使算法前期视野和步长很大,后期视野和步长很小,提高算法的运行效率和精确性;在基本遗传算法中加入精英选择策略和保护、淘汰算子,得到全局最优解。仿真结果表明,混合算法有效克服了单一算法容易局部收敛的缺点,收敛速度快,能有效得到最优路径,计算精度高。 In order to enable the unmanned surface vehicle (USV) for water environment monitoring to effectively avoid static obstacles while monitoring and sampling water quality,and to travel in optimal or near optimal path,we propose a hybrid strategy with variable step sizes and variable view ranges,which combines an adaptive artificial fish swarm algorithm (AFSA) with an improved genetic algorithm (GA).After the artificial fish finishes foraging,tracking and clustering operations,the GA is introduced.A decaying exponential function is chosen to enlarge the vision range of and step length in the early phase and to reduce them in the late phase.This can improve the efficiency and accuracy of the algorithm.Simultaneously,an elite selection strategy,a protection operator and an elimination operator are introduced to the basic genetic algorithm to obtain the global optimal solution.Simulation results show that the hybrid algorithm can effectively overcome the disadvantages of a single algorithm,and that is easy to fall into local convergence.The proposed algorithm has a fast convergence speed and effectively obtains the optimal path with high calculation accuracy.
作者 梁雪慧 赵嘉祺 LIANG Xue-hui;ZHAO Jia-qi(Tianjin Key Laboratory of Control Theory and Applications in Complicated Systems,Tianjin University of Technology,Tianjin 300384;School of Electrical and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第5期942-947,共6页 Computer Engineering & Science
基金 天津市科技特派员项目(14JCTPJC00510) 天津市科技计划资助项目(13ZCZDGX03800)
关键词 自适应人工鱼群算法 遗传算法 保护算子 淘汰算子 最优路径 adaptive artificial fish swarm algorithm genetic algorithm protection operator elimination operator optimal path
  • 相关文献

参考文献8

二级参考文献51

共引文献157

同被引文献99

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部