期刊文献+

基于LeapMotion的手势仿生机械臂系统设计 被引量:6

Gesture Bionic Robot Arm System Based on LeapMotion
下载PDF
导出
摘要 针对目前机械臂的控制方式不够直接和简便,提出了一种基于人体手势控制的控制方法.利用LeapMotion体感控制器的数据,结合计算机编程语言C#设计了人体手势识别软件,可识别人体手势运动情况并得出手势运动数据,搭建了通信网络,将手势运动数据远程传输到机械臂控制器,结合机械臂运动控制算法,使机械臂完成相应的人体手势仿生动作.设计制作了机械臂控制器实验平台,验证了该控制方法的有效性,稳定地实现了对机械臂手势仿生动作控制. In view of the fact that the control method of the current manipulator is not straightforward and simple, this paper proposes a control method based on human gesture control. Using the data of LeapMotion somatosensory controller and combined with computer programming language C#, the human gesture recognition software is designed. The gesture recognition software can recognize the human gesture movement and get the gesture motion data. A communication network is built to transmit the gesture motion data to the robot arm remotely. The controller, combined with the robot arm motion control algorithm, enables the robotic arm to perform the corresponding human body gesture bionic action. The experimental platform of the manipulator controller is designed and manufactured to verify the effectiveness of the proposed control method and stable control of the bionic motion of the robot arm.
作者 张巧龙 彭晓 许志伟 李延平 贺聘彬 ZHANG Qiao-long;PENG Xiao;XU Zhi-wei;LI Yan-ping;HE Pin-bin(Hunan Provincial Key Laboratory of Wind Generator and Its Control, Hunan Institute of Engineering,Xiangtan 411104, China;College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411104, China)
出处 《湖南工程学院学报(自然科学版)》 2019年第2期11-15,共5页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 风力发电机组及控制湖南省重点实验室开放研究基金资助项目(FLFD1702) 湖南工程学院研究生教改资助项目(201601) 湖南省教育厅优秀青年科技项目 2018年国家级大学生创新创业训练计划资助项目(201811342003) 2018年湖南省研究生科研创新项目(CX2018B810)
关键词 手势控制 计算机编程语言 手势识别软件 手势仿生动作 gesture control computer programming language gesture recognition software gesture bionic action
  • 相关文献

参考文献3

二级参考文献15

  • 1李茂贞,戴国忠,董士海.多通道界面模型与关键技术[J].计算机科学,1997,24(1):1-4. 被引量:8
  • 2Stefan Waldherr,Roseli Romero,Sebastian Thrun. A Gesture Based Interface for Human-Robot Interaction[J] 2000,Autonomous Robots(2):151~173
  • 3Lawrence K. Saul,Michael I. Jordan. Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones[J] 1999,Machine Learning(1):75~87
  • 4Smith J D, Twombly I A, Bruyns C, et al. NASA Virtual GloveboX (VGX): training and simulation for biology re- search aboard the international space station[ C ]//AIAA Con- ference on International Space Station Utilization. 2001 : 15- 18.
  • 5Frank A O, Twombly I A, Barth T J, et al. Finite element methods for real-time haptic feedback of soft-tissue models invirtual reality simulators [ C ]//Virtual Reality, 2001. Pro- ceedings. IEEE. IEEE, 2001 : 257-263.
  • 6Barnes B, Menon A S, Mills R, ct al. Virtual reality exten- sions into surgical training and teleoperation [ C ]//Information Technology Applications in Biomedicine, 2003. 4th Interna- tional IEEE EMBS Special Topic Conference on. IEEE, 2003 : 142-145.
  • 7Liu Y, Chert S, Jiang G, el al. VR simttIation system fur EVA astronaut training [ C ]//Proceedings of AIAA Confer- ence on International Space Station Utilization_ 2010.
  • 8Pavlovic V I, Sharma R, Huang T S. Visual interpretation of hand gestures for human-computer interaction: a review [ J]. Pattern Analysis and Machine Intelligence, 1997, 19 ( 7 ) : 677-695.
  • 9Hu H, Chao J G, Zhao Z Q. Study of vision-based hand ges- ture recognition system for astronaut virtual training[ C 1//Ad- vanced Materials Research. 2014, 998: 1062-1065.
  • 10Weichert F, Bachmann D, Rudak B, et al. Analysis of the accuracy and robustness of the leap motion controller [ J ]. Sensors, 2013, 13 (5) : 6380-6393.

共引文献76

同被引文献39

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部