期刊文献+

基于极小数据结构的不确定频繁模式挖掘算法的研究

Research on Uncertain Frequent Pattern Mining Algorithm Based on Minimal Data Structure
下载PDF
导出
摘要 近来为了满足处理不确定数据库的需求,人们提出了不确定模式挖掘的概念,并设计了各种相关的算法,但是这些算法花费大量的处理时间,而且挖掘精度不佳.提出了基于极小数据结构不确定频繁模式挖掘算法,实验结果显示该算法能够节省大量的处理时间,提高挖掘精度. To meet the needs of dealing with uncertain databases, people propose the concept of uncertain pattern mining and design various related methods, but the up-to-date algorithms cost a lot of time with poor mining accuracy. An algorithm for mining uncertain frequent patterns based on minimal data structure is proposed. Experimental results show that the algorithm can save a lot of processing time and improve the mining accuracy.
作者 李峰 LI Feng(College of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China)
出处 《湖南工程学院学报(自然科学版)》 2019年第2期36-39,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南工程学院青年重点项目(XJ1504) 湖南省教育厅一般项目(17C0397)
关键词 极小数据结构 不确定频繁模式 挖掘算法 minimal data structure uncertain frequent patterns mining algorithm
  • 相关文献

参考文献4

二级参考文献71

  • 1刘殷雷,刘玉葆,陈程.不确定性数据流上频繁项集挖掘的有效算法[J].计算机研究与发展,2011,48(S3):1-7. 被引量:14
  • 2Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23.
  • 3Kuramochi M,Karypis G.Frequent subgraph discovery//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2001).San Jose,California,USA,2001:313-320.
  • 4Yan X,Han J.gSpan:Graph-based substructure pattern mining//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2002).Maebashi City,Japan,2002:721-724.
  • 5Tian Y,Hankins R A,Patel J M.Efficient aggregation for graph summarization//Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD 2008).Vancouver,BC,Canada,2008:567-580.
  • 6Chen Chen,Lin Cindy X,Fredrikson Matt,Christodorescu Mihai,Yan Xifeng,Han Jiawei.Mining graph patterns efficiently via randomized summaries//Proceedings of the VLDB09.Lyon,France,2009:742-753.
  • 7Yan X,Han J.Closegraph:Mining closed frequent graph patterns//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD').New York,NY,USA,2003:286-295.
  • 8Zeng Z,Wang J,Zhang J,Zhou L.FOGGER:An algorithm for graph generator discovery//Proceedings of the 12th Inter-national Conference on Extending Database Technology(EDBT 2009).Saint-Petersburg,Russia,2009:517-528.
  • 9Yan X,Cheng H,Han J,Yu P S.Mining significant graph patterns by scalable leap search//Proceedings of the SIGMOD 2008.Vancouver,BC,Canada,2008:433-444.
  • 10Ranu Sayan,Singh Ambuj K.GraphSig:A scalable approach to mining significant subgraphs in large graph databases//Proceedings of the IEEE 25th International Conference on Data Engineering(ICDE'09).Washington,DC,USA:IEEE Computer Society,2009:844-855.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部