期刊文献+

大数据工程教育的探索 被引量:4

下载PDF
导出
摘要 国内已经获批"数据科学与大数据技术专业"的高校多达280所,但是由于概念不清,定位不明确,多数院校的人才培养目标及课程设置大而统。文章界定大数据产业中的不同角色,以该专业的一个主要方向——大数据工程教育为例,研究如何正确把握人才培养定位、科学地设置课程,给出了培养数据工程师途径的实例。最后,指出了大数据工程教育将要面对"有大数据可用","高校必须与数据企业合作"等主要问题的挑战。 There are up to 280 colleges and universities in China whose the specialty provisions of Data Science and Big Data Technology Major have got approved. But due to the conception-confusing, orientation unclear, for most of colleges and universities their professional training goals and curriculum setting are large and unionized. This paper defines the different roles in big data industry, and take one of the main research branches in this major, big data engineering education as an example to discuss how to correctly form the orientation of talent cultivation and scientifically lay out the curriculum. Also, an illustration of the way to train data engineers is presented. Finally some challenges to be faced for big data engineering education, such as the problems of "big data is available","universities must cooperate with data enterprises", and other major problems are pointed out in this paper.
作者 张学新
出处 《高教学刊》 2019年第12期76-77,81,共3页 Journal of Higher Education
基金 湖北工程学院教学研究项目"大数据工程教育之统计学与计算机科学融合研究"(编号:201729)
关键词 大数据工程 人才培养定位 跨学科融合 数据分析技能差异 课程体系改革 big data engineering the orientation of talent cultivation interdisciplinary integration skill differences in data analysis curriculum system reform
  • 相关文献

参考文献10

二级参考文献84

  • 1楼群英.基于SWOT分析的硕士研究生就业决策[J].高等农业教育,2007(8):80-83. 被引量:15
  • 2陶海映,李治国.浅谈统计学基本问题[J].现代商业,2007(26):282-282. 被引量:2
  • 3[英]维克托·迈尔·舍恩伯格,肯尼思.库克耶.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛译.杭州:浙江人民出版社,2013.
  • 4[日]城田真琴.大数据的冲击[M].北京:人民邮电出版社,2013:34-51.
  • 5赵云山,刘焕焕.大数据技术在电力行业的应用研究[J].2013电力行业信息化年会论文集[C].2013.
  • 6Steve Lohr. The Age of Big Data[ N ]. New York Times, 2012 - 02 -11.
  • 7Mckisey Global Institute. Big data : The next frontier for innovation, competition, and productivity[ OL]. 2012 - 08 - 21.
  • 8IBM. What is big Data? [OL]. 2012 -08 -20.
  • 9Panda B, Herbach JS, Beau S, et al. PLANET: Massively parallel learning of tree ensembles with MapReduce [ J ]. PVLDB, 2009,2 (2) :1426 - 1437.
  • 10Kumar V,Andrade H,Gedik B ,et al. DEDUCE:At the intersection of MapReduce and stream processing In : M&nolescu I, Spaccapietra S, Teubner J, KitauregawaM, Leger A, Naumann F, Ailamaki A. Ozcan F, eds. Proc. oftheEDBT. Lausanne: ACM Press, 2010,657 - 662.

共引文献217

同被引文献20

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部