摘要
无线传感器网络与大数据相结合,对未来实现人工智能具有重要意义。本文以WSN系统模型的架构为脉络,有重点阐述了WSN的底层配置(节点选取与布设等)、网络结构及传输功能。并在此基础上,结合大数据的思想,提出了节点配置多种类型传感器的要求和更加适应传感器网络节能需求的传输运行方法,即使用Hadoop对传输数据进行分布式存储和MAP\REDUCE运算,以整合全网资源,解决过大数据包的传输受限问题。
The combination of wireless sensor networks and big data is of great significance for the future implementation of artificial intelligence. Along the framework sequence of WSN system model , this paper elaborates the bottom configuration of WSN (nodes selection and the layout, etc.), network structure and transmission function in detail. whereas on this basis, combined with the big data thinking, a requirement has put forward that is the diversity of configuration of sensor-nodes , and a method which is more adapt to the transmission operation of energy efficiency requirements for sensor networks, namely the using of Hadoop to operate the transmission of data with distributed storage and MAP\\REDUCE , aim to integrate the whole network resources, solve the problem of large data packet transmission limited.
作者
闫丽娟
牛卫秦
邓基伟
YAN Lijuan;NIU Weiqin;DENG Jiwei(32016 Troops, Lanzhou 730020, China)
出处
《测绘与空间地理信息》
2019年第5期103-106,共4页
Geomatics & Spatial Information Technology