期刊文献+

轴承故障诊断中特征选取技术 被引量:6

Research onfeature selection technology in bearing fault diagnosis
原文传递
导出
摘要 针对轴承故障诊断建模中如何通过筛选有效特征提高模型诊断准确率的问题,提出一种新的特征选取方法。在计算所得特征集合中,利用诊断模型直接对特征进行判断,将高于阈值的诊断准确率对应的特征(组合)选取为显著特征,以显著特征导向选取方式,找到候选特征集合中维度低、诊断准确率高的特征。试验结果表明,本研究提出的方法可筛选出有效特征,降低模型参数、减少样本需求量、提高模型准确率,提升了故障诊断的效率。 A new method based on feature selection(FS) was proposed to select efficient features to promote the classification accuracy in bearing fault diagnosis. First, the outstanding features whose classification accuracy were higher than the threshold were directly selected by diagnosis model from a big feature set. Then the significant combinations of features which had less dimensions and higher classification accuracy were selected in the candidate feature set by a distinctive feature-oriented manner. Experiments showed that the proposed method had advantages in selecting efficient features, reducing the model parameters, decreasing the demand of samples and enhancing the model classification accuracy. As a result, it provided a new idea for feature selection and improved the efficiency of bearing fault diagnosis.
作者 汪嘉晨 唐向红 陆见光 WANG Jiachen;TANG Xianghong;LU Jianguang(Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Guiyang 550025,Guizhou, China;School of Mechanical Engineering, Guizhou University, Guiyang 550025, Guizhou, China;State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2019年第2期80-87,95,共9页 Journal of Shandong University(Engineering Science)
基金 贵州省公共大数据重点实验室开放基金资助项目(2017BDKFJJ019) 贵州大学引进人才基金资助项目(贵大人基合字(2016)13号)
关键词 滚动轴承 故障诊断 显著特征 显著特征组合 特征选择 rolling bearing fault diagnosis outstanding features outstanding features combination feature selection
  • 相关文献

参考文献14

二级参考文献147

共引文献350

同被引文献28

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部