期刊文献+

多代表点自约束的模糊迁移聚类 被引量:1

Transfer fuzzy clustering based on self-constraint of multiple medoids
原文传递
导出
摘要 以往建立在模糊C均值(fuzzy C-means, FCM)框架下利用源域虚拟簇中心作为迁移知识的迁移聚类算法容易受到离群点和噪声的干扰,且单个簇中心不足以描述簇结构。针对此问题,提出多代表点自约束的模糊迁移聚类算法,该算法引入样本代表权重机制为簇中每个样本分配代表权重来刻画簇结构,这种机制能更好的刻画簇结构,对离群点和噪声有较好的抑制作用;同时利用源域样本,重构目标域簇结构,并以此作为迁移知识进行目标域样本聚类,相对于利用单中心作为迁移知识来说,整体重构后的目标域簇结构所包含的迁移知识量更为丰富。试验结果表明。在人工数据集和真实数据集上,所提出的聚类算法相比对比算法,NMI和ARI最高提升了0.674 5和0.608 4。说明在迁移环境下,以代表点自约束作为知识迁移规则,所提出的聚类算法具有一定的聚类效果。 Transfer clustering approaches derived from the fuzzy C-means(FCM) framework, which considered virtual centers from source domains as transfer knowledge, inherited the shortcomings of FCM. These methods were not robust to outliers and noises, and whose single cluster centers were not sufficient enough to capture the inner structures of clusters. To solve the problems, a transfer fuzzy clustering approach was proposed based on the self-constraint of multiple medoids. Prototype weights were introduced and assigned to each object to capture the inner structures of clusters. Such a weighting strategy could capture the inner structures of clusters more sufficiently and made the clustering more robust to outliers and noises;Furthermore, with the distribution of data in the source domain, the inner structure of data in the target domain was reconstructed, and the corresponding new structure was considered as the transfer knowledge to guide the clustering of the target domain. Relative to the use of single virtual center of each cluster as transfer knowledge, the updated inner structures of data in the target domain contained more knowledge. Experimental results demonstrated that the proposed approach achieved 0.674 5 and 0.608 4 improvements in terms of NMI and ARI on synthetic datasets and real-life datasets compared with introduced benchmarking approaches. Therefore, based on the transfer principle of the self-constraint of multiple medoids, the proposed clustering approach performed well in the transfer environment.
作者 秦军 张远鹏 蒋亦樟 杭文龙 QIN Jun;ZHANG Yuanpeng;JIANG Yizhang;HANG Wenlong(Department of Medical Informatics, Nantong University, Nantong 226001, Jiangsu, China;School of Digital Media, Jiangnan University, Wuxi 214122, Jiangsu, China;School of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, Jiangsu, China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2019年第2期107-115,共9页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(81701793) 南通市科技计划资助项目(MS12017016-2) 江苏省社会科学基金资助项(18YSC009)
关键词 模糊聚类 迁移聚类 多代表点 迁移学习 无监督学习 fuzzy clustering transfer clustering multiple exemplars transfer learning unsupervised learning
  • 相关文献

参考文献5

二级参考文献100

  • 1邓赵红,王士同,吴锡生,胡德文.鲁棒的极大熵聚类算法RMEC及其例外点标识[J].中国工程科学,2004,6(9):38-45. 被引量:12
  • 2苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 3Hall L 0, Goldgof D B. Convergence of the Single-Pass and Online Fuzzy C-Means Algorithms. IEEE Trans on Fuzzy Systems, 2011, 19(4): 792-794.
  • 4WU K L, Yang M S. Alternative C-Means Clustering Algorithms. Pattern Recognition, 2002, 35(10): 2267-2278.
  • 5Yang M S. On a Class of Fuzzy Classification Maximum Likelihood Procedures. Fuzzy Sets and Systems, 1993, 57 (3) : 365-375.
  • 6LinJ S. Fuzzy Clustering Using a Compensated Fuzzy Hopfield Net?work. Neural Processing Letters, 1999, 1O( 1) : 35-48.
  • 7Krishnapuram R, KellerJ M. A Possibilistic Approach to Clus?tering. IEEE Trans on Fuzzy Systems, 1993, 1 (2) : 98-110.
  • 8Krishnapuram R, KellerJ M. The Possibilistic Means Algorithms: Insights and Recommendation. IEEE Trans on Fuzzy Systems, 1996, 4(3) : 385-393.
  • 9Li Ruiping, Mukaidon M. A Maximum-Entropy Approach to Fuzzy Clustering//Proc of the 4th IEEE International Conference on Fuzzy System. Yokohama,Japan, 1995, IV: 2227 -2232.
  • 10Karayiannis N B. MECA: Maximum Entropy Clustering Algorithm//Proc of the 3rd IEEE International Conference on Fuzzy Systems. Orlando, USA, 1994: 630-635.

共引文献41

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部