期刊文献+

Catalytic conversion of cellulose-based biomass and glycerol to lactic acid 被引量:6

Catalytic conversion of cellulose-based biomass and glycerol to lactic acid
下载PDF
导出
摘要 Catalytic transformation of cellulose into value-added chemicals is of great importance for utilization of renewable and abundant biomass. Due to the high oxygen content, cellulose serves as an ideal candidate for the production of oxygenates, in particular lactic acid which is a versatile building block in chemical industry. The efficient conversion of cellulose to lactic acid generally requires selective activation of specific C-O and C-C bonds, and therefore multifunctional catalysts that combine several key reactions including hydrolysis, isomerization and retro-aldol fragmentation are highly desirable. This review article highlights the recently developed catalytic systems and catalysts for the selective transformation of cellulose and cellulose-derived carbohydrates into lactic acid, lactates and/or its esters. Emphases will be put on the reaction mechanism and key factors that exert effects on the catalytic performances. In addition, the catalytic transformation of glycerol, a C3 compound over-supplied from biodiesel industry, will also be surveyed. Recent advances in the development of new catalysts or strategies are analyzed and discussed to gain insight into the transformation of C3 compound to lactic acid. Catalytic transformation of cellulose into value-added chemicals is of great importance for utilization of renewable and abundant biomass. Due to the high oxygen content, cellulose serves as an ideal candidate for the production of oxygenates, in particular lactic acid which is a versatile building block in chemical industry. The efficient conversion of cellulose to lactic acid generally requires selective activation of specific C–O and C–C bonds, and therefore multifunctional catalysts that combine several key reactions including hydrolysis, isomerization and retro-aldol fragmentation are highly desirable. This review article highlights the recently developed catalytic systems and catalysts for the selective transformation of cellulose and cellulose-derived carbohydrates into lactic acid, lactates and/or its esters. Emphases will be put on the reaction mechanism and key factors that exert effects on the catalytic performances. In addition, the catalytic transformation of glycerol, a C3 compound over-supplied from biodiesel industry, will also be surveyed. Recent advances in the development of new catalysts or strategies are analyzed and discussed to gain insight into the transformation of C3 compound to lactic acid.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期138-151,共14页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(21690082,91545203,21473141) the Research Fund for the Doctorial Program of Higher Education(20130121130001) the Fundamental Research Funds for the Central Universities(20720160029) the Program for Innovative Research Team in University(IRT_14R31) Educational Research Projects for Young and Middle-aged Scholars of Fujian Province(JAT170019)
关键词 CELLULOSE GLYCEROL LACTIC acid MULTIFUNCTIONAL CATALYSIS Cellulose Glycerol Lactic acid Multifunctional catalysis
  • 相关文献

同被引文献32

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部