期刊文献+

Plane Analysis for an Inclusion in ID Hexagonal Quasicrys tai Using the Hyp er singular Integral Equation Method 被引量:1

原文传递
导出
摘要 A model of a thin elastic inclusion embedded in an infinite ID hexagonal quasicrystal is discussed. The atomic arrangements of the matrix and the inclusion are both periodic along the xi-direction and quasiperiodic along the a;2-direction in the oxiX2-coordinate system. Using the hypersingular integral equation method, the inclusion problem is reduced to solving a set of hypersingular integral equations. Based on the exact analytical solution of the singular phonon and phason stresses near the inclusion front, a numerical method of the hypersingular integral equation is proposed using the finite-part integral method. Finally, the numerical solutions for the phonon and phason stress intensity factors of some examples are given.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第2期249-260,共12页 固体力学学报(英文版)
基金 the National Natural Science Foundation of China (Project No. 11172320 and No. 11272341).
  • 相关文献

参考文献6

二级参考文献26

  • 1秦太验,Int J Fracture,1993年,60卷,373页
  • 2汤任基,上海交通大学学报,1990年,24卷,5/6期,36页
  • 3Liu X H,Engng Fracture Mech,1986年,23卷,821页
  • 4Muskhelishvili N I 赵惠远(译).数学弹性力学的几个基本问题[M].北京:科学出版社,1958..
  • 5Shechtman D et al 1984 Phys. Rev. Lett. 53 1951
  • 6Bak P 1985 Phys. Rev. B 32 3764
  • 7Levine D, Lubensky T C and Ostlunid Set al 1985 Phys.Rev. Lett. 54 1520
  • 8Chen H, LiD Xand Kuo K H 1987 Phys. Rev. Lett. 591010
  • 9Socolar J E S, Lubensky T C and Steinhardt P J 1987 Phys.Rev. B 34 3345
  • 10Yuan H Q and Zhong J X 1998 Chin. Phys. 7 36

共引文献21

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部