期刊文献+

基于改进栈式核稀疏深度模型的大规模极化SAR地物分类算法 被引量:3

LARGE-SCALE POLSAR TERRAIN CLASSIFICATION BASED ON IMPROVED STACKED KERNEL SPARSE DEEP MODEL
下载PDF
导出
摘要 地物分类是极化SAR应用的一个重要分支。传统的地物分类方法需要提取特征,通过分类器进行分类。在栈式稀疏自编码模型的基础上,提出一种鲁棒的极化SAR地物分类算法。采用基于Morlet小波核的最小二乘支撑向量机代替深度模型中常用的Softmax分类器。通过与栈式稀疏自编码网络相结合,在一定程度上克服了传统极化SAR影像地物分类方法受相干斑噪声影响,且结果过于粗糙的缺点,保证了分类结果中非匀质区域的连贯性和匀质区域的一致性。真实极化SAR数据仿真实验结果表明,该算法可以有效地提高分类精度,降低相干斑噪声的对分类精度的影响。 Terrain classification is an important branch of polarization SAR(PolSAR)applications.Traditional terrain classification methods require the extraction of features and then classification by classifiers.On the basis of the stack sparse auto-encoding model,we proposed a robust PolSAR terrain classification algorithm.We used Morlet wavelet kernel-based least squares support vector machine to replace the commonly used Softmax classifier in the deep learning model.Combining with stack sparse AutoEncoder network,it overcame the shortcomings of traditional PolSAR image classification methods,which was greatly affected by speckle noise and the result was too rough.It guarantees the consistency of inhomogeneous regions in classification results and the coherence of homogeneous regions.The simulation results of real PolSAR data show that the algorithm can effectively improve the classification accuracy and reduce the influence of speckle noise on the classification accuracy.
作者 肖茹 Xiao Ru(Department of Basic Education,Henan Health Cadre College,Zhengzhou 450008,Henan,China)
出处 《计算机应用与软件》 北大核心 2019年第5期165-170,共6页 Computer Applications and Software
关键词 极化SAR 地物分类 深度学习 相干斑噪声 稀疏深度编码 核矢量机 PolSAR Terrain classification Deep learning Speckle noise Sparse deep coding Nuclear vector machine
  • 相关文献

参考文献7

二级参考文献56

  • 1徐丰,金亚秋.目标散射的去取向理论和应用(一)去取向理论[J].电波科学学报,2006,21(1):6-15. 被引量:7
  • 2Vladimir. N. Vapnik. Statistical Leaning Theory[M] . New York: John Wiley& Sons,1998.
  • 3A. Smola, B. Scholkopf. A tutorial on support vector regression[EB/OL], http://www.kernel-machines.org/.
  • 4N. Cristianini, J. S. Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. London: Cambridge University Press, 2000.
  • 5Mercer J. Function of positive and negative type and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society of London, 1909(A-209):415-446.
  • 6A. Smola, B. Scholkopf. The connection between regularization operators and support vector kernels[J]. Neural Network, 1998(11):637-649.
  • 7Ingrid Daubechies. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transaction on Information Theory, 1990, 36(5):961-1005.
  • 8Q. H. Zhang and A. Benveniste. Wavelet networks[J]. IEEE Transactions on Neural Networks, 1992, 3(6) :889-898.
  • 9SHI J, MALIK J. Normalized cuts and image segmentation [ J]. IEEE Transations on Pattern Analysis and Machine Intelligence ,2000,25 (6) :675 - 690.
  • 10Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the nystrom method [ J ]. IEEE Transations on Pattern Analysis and Machine Intel- ligence ,2004,26:214 - 255.

共引文献55

同被引文献30

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部