期刊文献+

结合大数据流特征和改进SOM聚类的资源动态分配算法 被引量:5

DYNAMIC RESOURCE ALLOCATION ALGORITHM BASED ON BIG DATA STREAM CHARACTERISTIC AND IMPROVED SOM CLUSTERING
下载PDF
导出
摘要 在大数据流中,由于数据特征的未知性,如何分配数据资源是一个难题。为了解决这个问题,提出一种大数据环境下基于数据特征预测和改进自组织映射SOM(Self-organizing maps)的资源管理算法。根据数据的体积和速度变化,通过自回归模型对下一时间间隔到达的数据的特征进行估计,估计值用数据特征(CoD)向量表示;利用粒子群优化PSO算法来优化SOM算法的权重分布,形成改进型SOM算法,对CoD向量进行聚类,动态创建和分配云资源集群。这些集群以拓扑排序的方式创建,集群之间的联系越多,它们的排序越接近,利用这种拓扑排序来减少等待时间。实验结果表明,该算法能准确预测数据特征,有效提高了云资源的利用率。 In big data streams,it is a difficult problem to allocate data resources due to the unknown characteristics of data.To solve this problem,we proposed a resource management algorithm based on data characteristic prediction and improved self-organizing mapping(SOM)in big data environment.We estimated the data characteristics arriving at the next time interval by the autoregressive model according to the volume and velocity of the data,and the estimated value was represented by the characteristics of data(CoD)vector.Then we used the particle swarm optimization(PSO)to optimize the weight distribution of SOM algorithm,and an improved SOM algorithm was formed to cluster the CoD vectors,so as to dynamically create and allocate cloud resource clusters.These clusters were created in a topological sort.The more connections between clusters,the closer their sort was,so using this topological sort could reduce waiting time.The experimental results show that the proposed algorithm can not only accurately predict the data characteristics,but also effectively improve the utilization of cloud resources.
作者 项丽萍 杨红菊 Xiang Liping;Yang Hongju(Department of Information Engineering,Jincheng Institute of Technology,Jincheng 048000,Shanxi ,China;School of Computer and Information,Shanxi University,Taiyuan 030006,Shanxi,China)
出处 《计算机应用与软件》 北大核心 2019年第5期262-268,280,共8页 Computer Applications and Software
基金 国家自然科学基金项目(61873153)
关键词 大数据流 云计算 粒子群优化 自组织映射 数据特征 资源管理 Big data stream Cloud computing Particle swarm optimization Self-organizing map Characteristics of data Resource management
  • 相关文献

参考文献5

二级参考文献152

  • 1Big data. Nature, 2008, 455(7209): 1-136.
  • 2Dealing with data. Science,2011,331(6018): 639-806.
  • 3Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 4Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 5Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 6Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 7Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 8Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 9Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.
  • 10Sun Yizhou,Norick Brandon, Han Jiawei, Yan Xifeng, YuPhilip S,Yu Xiao. Integrating meta-path selection with user-guided object clustering in heterogeneous information net-works/ /Proceedings of the 18th ACM SIGKDD InternationalConference on Knowledge Discovery and Data Mining.Beijing, China, 2012: 1348-1356.

共引文献803

同被引文献62

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部