期刊文献+

基于社交关系与无监督学习的大数据推荐算法 被引量:2

BIG DATA RECOMMENDATION ALGORITHM BASED ON SOCIAL RELATIONSHIP AND UNSUPERVISED LEARNING
下载PDF
导出
摘要 针对大数据推荐系统中推荐准确率与效率较低的问题,设计一种基于社交关系与多上下文因素的大数据推荐系统。基于活动用户的社交网络,构建一个社交关系的张量模型;通过张量分解获得用户的上下文因素;基于候选集的相似性产生一个推荐列表。基于用户的反馈预测社交关系的范围,有效地减少推荐系统的计算量。真实数据集的实验结果证明,该算法提高了推荐系统的推荐精度,有效地缓解了稀疏性问题与冷启动问题,并且实现了较快的响应时间。 To address the problem of the low accuracy and efficiency in big data recommendation systems,we proposed a big data recommendation system based on social relationship and multi-context factors.A tensor model of social relationship was constructed based on the social network of the active user.We obtained the contextual factors by tensor factorization.A recommendation list was generated based on the similarity of the candidate sets.The range of social relationship was predicted based on the feedback of users,so that the computational complexity of recommendation system was reduced effectively.Experimental results on the real dataset show that the proposed algorithm improves the accuracy of recommendation systems,effectively alleviates the sparsity and cold start problems,and achieves a faster response time.
作者 李淑霞 杨俊成 蔡增玉 Li Shuxia;Yang Juncheng;Cai Zengyu(College of Electronics and Information Engineering,Henan Polytechnic Institute,Nanyang 473000,Henan,China;School of Computer and Communication,Zhengzhou University of Light Industry,Zhengzhou 450002,Henan,China)
出处 《计算机应用与软件》 北大核心 2019年第5期304-310,321,共8页 Computer Applications and Software
基金 全国高等院校计算机基础教育研究会纵向课题(2016GHB02003) 河南工业职业技术学院青年骨干教师培养计划
关键词 社交网络 大数据 推荐系统 稀疏性问题 冷启动问题 灰羊问题 Social network Big data Recommendation system Sparsity problem Cold start problem Grey sheep problem
  • 相关文献

参考文献7

二级参考文献60

  • 1王立才,孟祥武,张玉洁.上下文感知推荐系统.软件学报,2012,23(1):1-20.http://www.jos.org.cn/1000—9825/4100.htm.
  • 2Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17:734-749. [doi: 10.1109/TKDE.2005.99].
  • 3Ruohomaa S, Kutvonen L. Trust management survey. In: Proe. of the 3rd Int'l Conf. on Trust Management. Berlin: Springer- Verlag, 2005.77-92. [doi: 10.1007/11429760_6].
  • 4Singh S, Bawa S. A privacy, trust and policy based authorization framework for services in distributed environments. Int'l Journal of Computer Science, 2007,2(2):85-92.
  • 5Granovetter M. The strength of weak ties. American Journal of Sociology, 1973,78(6):1360-1380. [doi: 10.2307/202051].
  • 6Gilbert E, Karahalios K. Predicting tie strength with social media. In: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems. New York: ACM Press, 2009. 211-220. [doi: 10.1145/1518701.1518736].
  • 7Xiang R, Neville J, Rogati M. Modeling relationship strength in online social networks. In: Proc. of the 19th Int'l Conf. on World Wide Web. New York: ACM Press, 2010. 981-990. [doi: 10.1145/1772690.1772790].
  • 8Zarghami A, Fazeli S, Dokoohaki N, Matskin M. Social trust-aware recommendation system: A t-index approach. In: Proc. of the 2009 IEEE/WIC/ACM Int'l Joint Conf. on Web Intelligence and Intelligent Agent Technology, Vol.3. Washington: IEEE Computer Society, 2009. 85-90. [doi: 10.1109/WI-IAT.2009.237].
  • 9Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the 15th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2009. 397-406. [doi: 10.1145/ 1557019.1557067].
  • 10Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the 32nd Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York: ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].

共引文献117

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部