摘要
本文研究了记忆型经典反应扩散方程解的长时间动力学行为.当内部非线性项和边界非线性项均以超临界指数增长并满足一定的平衡条件时,运用抽象函数理论和半群理论,证明了该方程的全局吸引子在L^2(Ω)×L^2μ(R^+;H^1(Ω))中的存在性,此结果改进和推广了一些已有的结果.
In this paper,we study the asymptotic behavior of solutions for the classical reaction-diffusion equation with memory.Through the use of abstract function theory and semigroup theory,the existence of a global attractor in L^2(Ω)×L^2μ(R+;H^1(Ω))is proven when the internal nonlinearity and boundary nonlinearity adhere to polynomial growth of arbitrary order as well as the balance condition.This result extends and improves some known results.
作者
汪璇
赵涛
张玉宝
WANG Xuan;ZHAO Tao;ZHANG Yu-bao(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第3期13-23,共11页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11761062,11561064,11661071)
西北师范大学青年教师科研能力提升计划(NWNU-LKQN-14-6)
关键词
经典反应扩散方程
非线性边界
衰退记忆
任意阶多项式增长
classical reaction-diffusion equation
nonlinear boundary
fading memory
polynomial growth of arbitrary order