期刊文献+

两类阿贝尔Cayley图上的完全状态转移

Perfect state transfer of two classes of abelian Cayley graphs
下载PDF
导出
摘要 完全状态转移在量子信息传输以及量子计算中有重要的应用,本文利用有限阶阿贝尔群上的特征、等价类,有理数域上的p-adic赋值等理论,通过计算得出两类有限阶阿贝尔群G=Z_4?Z_8,G=Z_8?Z_8上的Cayley图有完全状态转移。 The perfect state transfer(PST)is of great significance for its applications in quantum information transmission and quantum computation.In this paper,based on the theory of character and equivalent classes of the finite abelian group and that of the p-adic valuation on rational number filed,we obtain the fact that two classes of finite abelian groups G=Z4+Z8 and G=Z8+Z8 have the PST of Cayley graphs.
作者 张爱仙 吉喆 ZHANG Aixian;JI Zhe(School of Sciences,Xi’an University of Technology,Xi’an 710054,China)
出处 《西安理工大学学报》 CAS 北大核心 2019年第1期69-72,共4页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(11401468 11426172) 陕西省教育厅科研计划资助项目(2014JK1544)
关键词 CAYLEY图 完全状态转移 特征 指数赋值 Cayley graph perfect state transfer character exponential valuation
  • 相关文献

参考文献1

二级参考文献10

  • 1Ding C, Liu Y, Ma C, et al. The weight distributions of the duals of cyclic codes with two zeros[J]. IEEE Transactions on Information Theory, 2011, 57 ( 12 ) : 8000-8006.
  • 2Ding C, Yin J. Sets of optimal frequency-hopping se quences[J]. IEEE Transactions on Inlormation Theo ry,2008,54(8) :3741-3745.
  • 3Feng K,Luo J. Weight distribution of some reducible cyclic codes[J]. Finite Fields and Their Applications, 2008,14 (2) : 390-409.
  • 4Luo J, Feng K. On the weight distributions of two classes of cyclic codes[J]. IEEE Transactions on Infor mation Theory, 2008,54 (12) : 5332-5344.
  • 5Xiong M. The weight distributions of a class of cyclic codes[J]. Finite Fields and Their Applications, 2013, (21) :84-96.
  • 6Zeng X, Hu L,Yue Q,et al. The weight distribution of a class of p-ary cyclic codes[J]. Finite Fields and Their Applications, 2010,16 ( 1 ) : 56-73.
  • 7Feng T. A characterization of two weight projective cyclic codes [J]. IEEE Transactions on Information Theory,2015,61(1) :66-71.
  • 8Ding C, Yang J. Hamming weights in irreducible eyclaie codes [J]. Discrete Mathematics, 2013, 313 (4): 434-446.
  • 9Zhou Z,Zhang A,Ding C,et al. The weight enumera tor of three families of cyclic codes[J]. IEEE Transac- tions on Information Theory,2013,59(9):6002- 6009.
  • 10Zhou Z,Ding C,Luo J,et al. A family of five-weight cyclic codes and their weight enumerators[J]. IEEE Transactions on Information Theory, 2013, 59 (10) : 6674-6682.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部