摘要
本文新提出随机增量张量奇异值分解方法.当数据逐步增加时,新方法能够在保持原数据的随机奇异值分解基础上,通过计算新增数据的奇异值分解得到更新后数据的张量奇异值分解.基于随机增量张量奇异值分解建立新的人脸识别模型.数值实验表明新模型与已有人脸识别模型相比具有较高的识别率.
In this paper,the randomized tensor singular value decomposition with increment is proposed.In the process of updating the training datasets,the existing results of the original datasets can be maintained and utilized to obtain the SVD decomposition of the new datasets.Based on the randomized tensor singular value decomposition with increment,a new model of face recognition is established.Numerical experiments show that the new model has higher recognition rate than existing face recognition models.
作者
邱子衿
陈潇
贾志刚
QIU Zi-jin;CHEN Xiao;JIA Zhi-gang(School of Mathematics and Statistics,Jiangsu Normal University,Xuzhou 221116,China)
出处
《聊城大学学报(自然科学版)》
2019年第3期23-35,共13页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金项目(11771188)资助
关键词
随机张量
增量T-SVD
人脸识别
张量脸
randomized tensor
incremental T-SVD
facial recognition
tensor face