期刊文献+

基于条件生成对抗网络的图像去雾算法 被引量:5

Image Dehazing Algorithm Based on Conditional Generation Against Network
下载PDF
导出
摘要 为了提高雾天图像的去雾效果,提出了一种基于条件生成对抗网络的图像去雾算法.通过端到端可训练的神经网络对合成的室内和室外数据集进行训练,为了捕捉图像中更多的有用信息,在生成网络中设计了生成器和判别器架构,利用预训练的视觉几何组特征模型和L-1正则化梯度对损失函数进行修正,并在判别器的最后一层引入Sigmoid函数用于特征映射,以便进行概率分析可归一化.利用合成数据集对损失函数进行训练,得到新的损失函数的参数,然后利用室外自然有雾图像数据集对训练得到的新的损失函数进行测试.实验结果表明:所提算法有效解决了去雾图像的颜色失真、过饱和、视觉伪像等问题,生成效果更好的去雾图像. In order to improve the dehazing effect of foggy images,an image defogging algorithm based on conditional generation against network was proposed.Through end-to-end trainable nerves,the network trained the synthesized indoor and outdoor data sets.In order to capture more useful information in the image,the generator and discriminator architecture was designed in the generation network,the loss function was modified using the pre-trained visual geometry group feature model and the L 1-regular gradient pair loss.At the last level of the discriminator,the Sigmoid function was applied to the feature map for probabilistic analysis to be normalized.By using the synthetic data set to train the loss function,the parameters of the new loss function were obtained,and then the new trained loss function was tested by the outdoor natural fog image data set.The experimental results show that the algorithm effectively solves the problem of color distortion,oversaturated,and visual artifacts,resulting in a better defogging image.
作者 梁毓明 张路遥 卢明建 杨国亮 LIANG Yu-ming;ZHANG Lu-yao;LU Ming-jian;YANG Guo-liang(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2019年第5期114-122,共9页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.51365017,61305019) 江西省教育厅科学技术研究项目(No.GJJ180445) 江西省科技厅青年科学基金(No.20132bab211032)~~
关键词 图像去雾 神经网络 条件生成对抗网络 有雾图像 损失函数 Image dehazing Neural network Conditional generation against network Foggy image Loss function
  • 相关文献

参考文献1

二级参考文献5

共引文献32

同被引文献33

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部