期刊文献+

基于数值微分的树突状细胞故障检测方法 被引量:3

Dendritic Cell Fault Detection Method Based on Numerical Differentiation
下载PDF
导出
摘要 针对现有树突状细胞算法(dendritic cell algorithm,DCA)在不同类型设备的故障检测中严重依赖人工经验定义输入信号,缺乏适应性和完备性,提出了一种基于数值微分的树突状细胞故障检测模型——NDDC-FD.首先,引入变化是系统危险发生的征兆和外在表现的思想,提出了一种基于变化危险感知的信号自适应提取方法,采用数值微分描述数据的变化,再从变化中提取输入信号.其次,原DC模型中异常抗原的评价方式对突变性故障能有效检测,却无法及时发现渐变性故障,提出了采用T细胞浓度作为故障评价指标.最后,在DAMADICS和TE两个基准平台上,将本文方法与原DCA算法和传统主元分析法(principal component analysis,PCA)进行比较测试.实验结果表明NDDC-FD方法不仅提高了原DCA算法的适应性,且和DCA、PCA相比具有较高检测率的同时,更能较早地检测到渐变性故障.因此,本文提出的故障检测方法NDDC-FD具有一般性,且性能良好. Currently,the DCA (dendritic cell algorithm) relies heavily on artificial experience to define the input signals in fault detection of different types of equipment,which is lack of adaptability and completeness.To address this problem,we propose a dendritic cell fault detection model based on numerical differentiation--NDDC-FD.In first place,according to change is the symptom and outward expression of system which is in danger,an adaptive signal extraction method based on danger perception of system status change is proposed,which uses numerical differentiation to calculate the change to extract the input signals.Next,the anomaly antigen evaluation method of original DC model can effectively detect abrupt fault,but it can′t detect incipient fault in time.Therefore,the fault evaluation indicator based on concentration of T cells is proposed.Finally,our method is tested on DAMADICS and TE benchmark,and compared with DCA and PCA (principal component analysis).The results show that NDDC-FD method not only improves the adaptability of DCA,but also has higher detection rate than DCA and PCA,and has lower detection delay time in incipient fault detection.Overall,our method is generality and has well performance in the fault detection of industrial equipment.
作者 肖振华 梁意文 谭成予 周雯 刘维炜 XIAO Zhen-hua;LIANG Yi-wen;TAN Cheng-yu;ZHOU Wen;LIU Wei-wei(School of Computer Science,Wuhan University,Wuhan,Hubei 430072,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1029-1035,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61170306 No.61877045) 国家863高技术研究发展计划(No.2012AA09A410) 深圳市科技计划(No.JCYJ20170412151159461)
关键词 人工免疫系统 树突状细胞 数值微分 故障检测 artificial immune systems dendritic cells numerical differentiation fault detection
  • 相关文献

参考文献6

二级参考文献101

  • 1李月臣,陈晋,宫鹏,岳天祥.基于NDVI时间序列数据的土地覆盖变化检测指标设计[J].应用基础与工程科学学报,2005,13(3):261-275. 被引量:36
  • 2朱大奇,桑庆兵.光电雷达电子部件的量子神经网络故障诊断算法[J].电子学报,2006,34(3):573-576. 被引量:14
  • 3邓伟,杨晓帆,吴中福.一种高效的基于BC图的t/k-诊断算法[J].电子学报,2006,34(4):698-701. 被引量:3
  • 4Dasgupta D, KrishnaKumar K, Wong D, Berry M, et al. Negative selection algorithm for akrcraft fault detection[oL] .http:// issrl, cs. memphis, exiu/papers/ais/2004/ICARIS04, pdf.
  • 5GC Luh, WC Cheng. lmmtme model-based fault diagnosis[J]. Mathematics and Computers in Simulation,2005,67(6) :515 - 539.
  • 6Thomas Lukasiewicz. Probabilistic description logic programs [ J]. International Journal of Approximate Reasoning, 2007, 45 (2) :288 - 307.
  • 7Henry Y. K. Lau, Vicky W. K. Wong. An immunity approach to strategic behavioral control[ J]. Engineering Applications of Artificial Intelligence, 2007,20(3):289- 306.
  • 8B Liu,L Wang,YH Jin,F Tang,DX Huang. Improved particle swarm optimization combined with chaos [J]. Chaos, Solitons and Fractals,2005,25(5) : 1261 - 1271.
  • 9J Pugh, A Martinoli. Discrete Multi-Valued Particle Swarm Optimization[A]. In Proc. WEE Swarm Intelligence Symposium C]. Switzerland: 2006.
  • 10F Caccavale, F Herd, L Villani, Adaptive Observer for Fault Diagnosis in Nonlinear Discrete-Time Systems [ J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130 (2). 961 - 970.

共引文献282

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部