期刊文献+

阿尔茨海默病的线粒体损伤机制 被引量:4

Mechanism of mitochondrial damage in Alzheimer’s disease
下载PDF
导出
摘要 阿尔茨海默病(Alzheimer's disease, AD)是一种中枢神经系统的退行性疾病,发病机制复杂且尚未完全阐明。AD的主要病理特征为β淀粉样蛋白(Amyloid-β, Aβ)沉积、老年斑(Senile plaque, SP)形成、神经元纤维缠结(Neurofibrillary tangles, NFTs)、突触及神经元丢失,而线粒体损伤在这些病理机制中起着重要作用。线粒体是脑细胞中重要的细胞器,对维持脑细胞正常功能及能量代谢必不可少。由线粒体动力学、生物能量代谢及运输功能出现障碍引起的线粒体损伤被认为是引起AD发病和病情进展的重要因素之一。 Alzheimer's disease(AD)is a common neurodegenerative disease of the central nervous system, and its pathogenesis is complex and not fully elucidated. The main pathological characteristics of AD are deposition of amyloid-β(Aβ), formation of senile plaque(SP)and neurofibrillary tangles(NFTs), loss of synapse and neuron. Mitochondrial damage plays an important role in the pathogenesis of AD. Mitochondria are important organelles in brain cells and are essential for maintaining normal function and energy metabolism of brain cells. Mitochondrial damage caused by defects in mitochondrial dynamics, bioenergy metabolism, and axonal transport, is considered as one of the important contributing factors to AD pathogenesis and progression.
作者 于罡 刘鑫 何蔚 YU Gang;LIU Xin;HE Wei(Gannan Medical University , Grade 2016, Ganzhou, Jiangxi 341000;Gannan Medical University , Grade 2017, Ganzhou, Jiangxi 341000;Gannan Medcal Universitg Degartment. Of Pharmacologn,Gnzhoo, Jiangxi 341000;Gannan Medical University Key Laboratory of Cerebrovascular Pharmacology of Jiangxi Province, Ganzhou, Jiangxi 341000)
出处 《赣南医学院学报》 2019年第4期390-395,共6页 JOURNAL OF GANNAN MEDICAL UNIVERSITY
基金 江西省研究生创新专项资金项目(YC2017-S419)
关键词 阿尔茨海默病 线粒体动力学 线粒体生物能 线粒体轴突运输 Alzheimer's disease Mitochondrial dynamics Mitochondrial bioenergy Mitochondrial axonal transport
  • 相关文献

参考文献1

二级参考文献82

  • 1Huang HC, Jiang ZF. Amyloid-beta protein precursor family mem- bers: a review from homology to biological function. J Alzheimers Dis 2011, 26: 607-626.
  • 2Huang HC, Jiang ZF. Accumulated amyloid-beta peptide and hy- perphosphorylated tau protein: relationship and links in Alzheimer's disease. J Alzheimers Dis 2009, 16: 15-27.
  • 3Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheim- er's disease. Lancet Neurol 2011, 10:187-198.
  • 4Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, Butterfield DA. Increased protein and lipid oxidative damage in mi- tochondria isolated from lymphocytes from patients with Alzheim- er's disease: insights into the role of oxidative stress in Alzheimer's disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 2011, 24: 77-84.
  • 5Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced A1- zheimer's disease. J Nucl Med 1997, 38: 925-928.
  • 6Kennedy AM, Frackowiak RS, Newman SK, Bloomfield PM, Seaward J, Roques P, et al. Deficits in cerebral glucose metabolism demon- strated by positron emission tomography in individuals at risk of familial Alzheimer's disease. Neurosci Lett 1995, 186:17-20.
  • 7Furst A J, Lal RA. Amyloid-beta and glucose metabolism in A1- zheimer's disease. J Alzheimers Dis 2011, 26 (Suppl 3): 105-116.
  • 8Hoyer S. Glucose metabolism and insulin receptor signal transduc- tion in Alzheimer disease. Eur J Pharmacol 2004, 490:115-125.
  • 9Young-Collier KJ, McArdle M, Bennett JP. The dying of the light: mitochondrial failure in Alzheimer's disease. J Alzheimers Dis 2012, 28: 771-781.
  • 10Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proe Natl Acad Sci U S A 2008, 105: 4441-4446.

共引文献7

同被引文献39

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部