期刊文献+

一种基于改进差分进化的K-均值聚类算法研究 被引量:6

Research on a K-Means Clustering Algorithm Based on Improved Differential Evolution
下载PDF
导出
摘要 针对K-均值算法的差异与缺点,对初始值敏感,易于落入局部最优解,差异进化算法具有强大的全局收敛能力和鲁棒性,但其收敛速度较慢。鉴于上述问题和缺陷,论文首先详细介绍了进化算法关键操作和差分进化算法的步骤和具体流程。然后,阐述了基于差分进化的K-均值聚类算法的描述,步骤和具体流程。最后,提出基于改进差分进化的K均值聚类算法,详细介绍改进方案,改进算法的步骤和具体流程。基于差分进化和改进算法的K均值聚类算法进行仿真实验,实验结果表明,该算法具有较好的搜索能力,算法收敛速度更快,鲁棒性更强。 The difference and the shortcomings of K-means algorithm are sensitive to the initial value and easily fall into the local optimal solution. The difference evolution algorithm has strong global convergence ability and robustness,but its convergence rate is slow. In view of the above problems and defects,this paper first introduces the steps and the concrete process of evolutionary algorithm key operation and differential evolution algorithm. Then,the description,steps and concrete flow of K-means clustering algorithm based on differential evolution are described. Finally,a K-means clustering algorithm based on improved differential evo. lution is proposed,and the improvement scheme,the steps and the concrete flow of the algorithm are introduced in detail. The K-means clustering algorithm based on differential evolution and improved algorithm is used to simulate the experiment. The experi. mental results show that the algorithm has better searching ability,and the algorithm is faster and more robust.
作者 王凤领 梁海英 张波 WANG Fengling;LIANG Haiying;ZHANG Bo(School of Mathematics and Computer Science,Hezhou University,Hezhou 542899)
出处 《计算机与数字工程》 2019年第5期1042-1048,共7页 Computer & Digital Engineering
基金 贺州学院教授科研启动基金项目(编号:HZUJS201615)资助
关键词 差分进化 K-MEANS算法 K-均值聚类算法 differential evolution K-means algorithm K-means clustering algorithm
  • 相关文献

参考文献4

二级参考文献34

  • 1王家耀,张雪萍,周海燕.一个用于空间聚类分析的遗传K-均值算法[J].计算机工程,2006,32(3):188-190. 被引量:19
  • 2赵光权,彭喜元,孙宁.带局部增强算子的微分进化改进算法[J].电子学报,2007,35(5):849-853. 被引量:30
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4Rainer S, Kenneth P. Differential Evolution——A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces[R]. ICSI, Tech. Rep.: TR-95-012, 1995.
  • 5Ali M M, Tǒrn A. Population Set-based Global Optimization Algorithms: Some Modifications and Numerical Studies[J]. Computers and Operations Research, 2004, 31(10): 1703-1725.
  • 6Liu Junhong, Lampinen J. A Fuzzy Adaptive Differential Evolution Algorithm[J]. Soft Computing, 2005, 9(6): 448-462.
  • 7Shahryar R, Hamid R T, Magdy M A S. Opposition-based Differential Evolution[J]. IEEE Transactions on Evolutionary Computation, 2006, 12(1): 64-79.
  • 8Anyong Q. Dynamic Differential Evolution Strategy and Applica- tions in Electromagnetic Inverse Scattering Problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 116-125.
  • 9Efrén M M, Jesus V R, Carlos A C C. Modified Differential Evolution for Constrained Optimization[EB/OL]. (2010-11-21). http://www.mendeley.com/research/modified-differential-evolutionfor-constrained-optimization/.
  • 10Mezura M, Carlos A C C. Saving Evaluations in Differential Evolution for Constrained Optimization[C] //Proc. of the 6th Mexican International Conference on Computer Science. [S. l.] : IEEE Press, 2005.

共引文献12

同被引文献60

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部