期刊文献+

基于深度学习的改进核相关滤波目标跟踪算法 被引量:1

Improved Target Tracking Algorithm of Kernel Correlation Filtering Based on Deep Learning
下载PDF
导出
摘要 针对传统核相关滤波目标跟踪算法跟踪精确度不足问题,论文利用卷积神经网络来提取图像深度特征,克服传统特征的不鲁棒性。其次,结合改进核相关滤波目标跟踪算法,当目标发生遮挡时,能够准确对目标进行跟踪。论文选取代表性视频对算法进行了测试,并与传统特征进行了对比。结果显示该算法精确度提高17.6,算法跟踪速率达到20.59fps。 In order to solve the problem that the tracking accuracy of the traditional target tracking algorithm is insufficient, this paper uses the convolution neural network to extract the image depth features and overcome the robustness of the traditional fea. tures. Secondly,combined with the improved target tracking algorithm of nuclear correlation filtering,when the target is blocked, the target can be tracked accurately. In this paper,representative video is selected to test the algorithm and compared with tradition. al features. The results show that the accuracy of the algorithm is increased by 17.6 and the tracking rate reaches 20.59fps.
作者 梁华刚 高冬梅 庞丽琴 LIANG Huagang;GAO Dongmei;PANG Liqin(School of Electronic and Control Engineering,Chang'an University,Xi'an 710064)
出处 《计算机与数字工程》 2019年第5期1115-1119,共5页 Computer & Digital Engineering
基金 国家自然科学基金项目"基于高阶上下文建构学习的多源异质视频异常检测"(编号:61603057) 陕西省重点产业链-工业领域项目(编号:2017ZDL-G-2-3)资助
关键词 卷积神经网络 特征提取 相关滤波 目标跟踪 convolution neural network feature extraction correlation filtering target tracking
  • 相关文献

参考文献4

二级参考文献47

  • 1李勇,陈贺新,耿晓东,陈绵书,桑爱军.基于目标区域定位和特征融合的图像检索算法[J].吉林大学学报(工学版),2008,38(S2):217-220. 被引量:2
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3HARE S, SAFFARI A, TORR P H S. Structured output tracking with kernels [ C] // Proceedings of the 2011 IEEE International Con- ference on Computer Vision. Piscataway: IEEE, 2011:263 -270.
  • 4KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detec- tion [ J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2012, 34(7) : 1409 - 1422.
  • 5BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online nmltiple instance learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8) : 1619 - 1632.
  • 6ZHANG K, ZHANG L, YANG M H. Real-time compressive track- ing [ M]// ECCV 2012: Proceedings of the 12th European Confer- ence on Computer Vision, LNCS 7574. Berlin: Springer, 2012: 64 - 877.
  • 7BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual ob- ject tracking using adaptive correlation filters [ C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recogni- tion. Piscataway: IEEE, 2010:2544-2550.
  • 8ZHANG K, ZHANG L, YANG M H, et al. Fast tracking via spatio- temporal context learning [ EB/OL]. [ 2015- 05- 01 ]. http://azad- project, ir/wp-content/uploads/2014/07/Fast -Tracking-via-Spatio-Tem- poral - Context - Learning. pdf.
  • 9HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels [ C]//EC- CV 2012: Proceedings of 12th European Conference on Computer Vision, LNCS7575. Berlin: Springer, 2012:702-715.
  • 10DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking [ C ]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway; IEEE, 2014: 1090- 1097.

共引文献75

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部