摘要
针对传统核相关滤波(Kernelized Correlation Filters,KCF)跟踪算法中利用单一特征描述目标的不完善性和目标尺度不变的局限性,论文提出了一种融合快速梯度直方图特征(Fast Histogram of Oriented Gradient,FHOG)和颜色属性特征(Color Name,CN)的尺度自适应核相关滤波算法。利用主成分分析法(Principal component analysis,PCA)获得鉴别力强的颜色属性特征减少计算量,达到颜色自适应的目的,并设计尺度自适应滤波器动态调整目标尺度。尺度滤波器与平移滤波器分别单独训练、局部优化,在保证跟踪实时性的基础上提高了算法的鲁棒性。和原KCF以及其改进算法相比,该方法在外观变形、尺度变化、光照变化、背景相似干扰等情况下有很好的适应性。
To deal with the limitations of using single feature and fixed scale in the traditional Kernelized Correlation Filters, an adaptive tracking algorithm based on KCF with multi-features fusion and adaptive scale is proposed. The feature map of the target is combined color attribute and HOG features. The computation PCA is used to obtain the discriminative CN features. The adaptive scale filter is designed to dynamically adjust the target scale. The scale filter and translation filter are trained and optimized indepen. dently. This proposed tracking algorithm is robust and real-time. Moreover,it performs better than other KCF in complex factors, such as appearance variety,scale variation,illumination variation and so on.
作者
冯汉
王永雄
张孙杰
FENG Han;WANG Yongxiong;ZHANG Sunjie(School of Optional-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093)
出处
《计算机与数字工程》
2019年第5期1125-1130,共6页
Computer & Digital Engineering
基金
国家自然科学基金项目(编号:61673276
61603255
61703255)资助
关键词
目标跟踪
核相关滤波
尺度自适应
特征融合
object tracking
kernelized correlation filters
adaptive scale
feature fusion