期刊文献+

基于CNN-LSTM的歌曲音频情感分类 被引量:3

Music Audio Sentiment Classification based on CNN-LSTM
下载PDF
导出
摘要 歌曲中含有丰富的人类情感信息,而研究歌曲情感分类有助于对海量音乐数据进行组织和检索。事实上,从歌曲音频信号中可提取时域和频域内的多项特征参数。针对情感分类主题,提取了梅尔频率倒谱系数、过零率以及频谱质心等音频特征,分别将单一特征和融合特征输入分类器,以研究不同特征参数对情感分类的影响,并且以卷积神经网络作为特征选择层,构建了两种组合网络分类模型。实验证明,相较于传统的分类算法,CNN-LSTM组合模型在歌曲音频情感分类任务上具有更高的准确率。 Songs contain abundant human emotion information, and studying the emotional classification of songs helps to organize and retrieve massive music data. In fact, multiple feature parameters in the time domain and frequency domain can be extracted from the song audio signal. Aiming at the theme of sentiment classification, the audio features such as Mel frequency cepstrum coefficient, zero-crossing rate and spectral centroid are extracted. The single feature and fusion feature are input into the classifier, so as to study the influence of different feature parameters on sentiment classification. Moreover, by using convolutional neural network as feature selection layers, two classification models of combinatorial networks are constructed. Experiments indicate that the CNN-LSTM combinatorial model has even higher accuracy in song audio sentiment classification tasks as compared with the traditional classification algorithms.
作者 陈长风 CHEN Chang-feng(School of Computer,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《通信技术》 2019年第5期1114-1118,共5页 Communications Technology
关键词 音乐情感分类 卷积神经网络 长短期记忆网络 梅尔频率倒谱系数 music sentiment classification CNN LSTM MFCC
  • 相关文献

参考文献2

二级参考文献21

  • 1叶庆云,蒋佳.基于语音MFCC特征的改进算法[J].武汉理工大学学报,2007,29(5):150-152. 被引量:9
  • 2余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 3Minsk M L. The society of mind. New York: Touchstone, 1985:85-86.
  • 4Picard R W. Affeetive computing. London: MIT Press, 1997:192-195.
  • 5AIST. Successful development of a robot with appearance and performance similar to human [EB/OL]. (2009-05-13)[2014-02-12]. http://www.aist. go .jp/aist_e/latest research/2009/20090513/200905 13.html.
  • 6Ganchev T, Fakotakis N, Kokkinakis G. Comparative evaluation of various MFCC implementations on the speaker verification task // 10th International Conference on Speech and Computer: Proceedings of the SPECOM-2005. Patras, 2005:191-194.
  • 7李桂春,郑能恒,李泰.基于模糊隶属值加权的MFCC特征提取算法//第七届和谐人机环境联合学术会议(HHME2011)论文集.北京,2011:40-46.
  • 8Tyagi V, Wellekens C. On desensitizing the Mel- cepstrum to spurious spectral components for robust speech recognition // ICASSP'05. Vancouver, 2005: 529-532.
  • 9Xu Min, Duan Lingyu, Cai Jianfei, et al. HMM- based audio keyword generation. Lecture Notes in Computer Science, 2004, 3333:566-574.
  • 10Sahidullah M, Saha G. Design, analysis and experimental evaluation of block based transfor- mation in MFCC computation for speaker recognition. Speech Communication, 2012, 4(4): 543-565.

共引文献17

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部