期刊文献+

改进的UKF算法估算锂离子电池SOC 被引量:7

Li-ion battery SOC estimation based on improved UKF algorithm
下载PDF
导出
摘要 采用锂离子电池戴维南模型,通过恒流脉冲放电实验结合递推最小二乘法(RLS)辨识模型参数,针对无迹卡尔曼滤波算法(UKF)存在的缺陷,提出改进算法。改进的UKF算法估算锂离子电池荷电状态(SOC)具有更高的精度,估算误差降到1%以内,可加快算法的收敛速度,收敛时间减少200s,并提高算法的稳定性以及自适应能力。 Thevenin model of the Li-ion battery was adopted.The parameters of the model were identified by the galvanostatic pulse discharge experiment and the recursive least square method(RLS).An improved algorithm was proposed for the flaws of the unscented Kalman filter(UKF).The state of charge(SOC)of Li-ion battery was estimated by the improved UKF algorithm with higher accuracy,the estimation error was reduced to less than 1%.The convergence speed of the algorithm was accelerated,the convergence time was reduced by 200 seconds.The stability of the algorithm and adaptive ability also were improved.
作者 侍壮飞 玄东吉 李广诚 钱潇 SHI Zhuang-fei;XUAN Dong-ji;LI Guang-cheng;QIAN Xiao(School of Mechanical and Electrical Engineering,Wenzhou University,Wenzhou,Zhejiang 325000,China;Shanghai Ases Spaceflight Technology Co.,Ltd,Shanghai 201108,China)
出处 《电池》 CAS CSCD 北大核心 2019年第2期105-108,共4页 Battery Bimonthly
基金 国家自然科学基金项目(61203042) 温州市重大科技专项项目(2018ZG007)
关键词 锂离子电池 无迹卡尔曼滤波 无迹变换 荷电状态(S0C) 估算 Li-ion battery unscented Kalman filter(UKF) unscented transformation state of charge(SOC) estimation
  • 相关文献

参考文献2

二级参考文献8

  • 1陈全世,林拥军,张东民.电动汽车用铅酸电池放电特性的研究[J].汽车技术,1996(8):7-11. 被引量:24
  • 2Johnson V H. Battery performance models in ADVISOR.Journal of Power Sources, 2002, 110 (8): 321-329.
  • 3Salameh Z M, Casacca M A, Lynch W A. A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversions, 1992, 7 (1):93-97.
  • 4United States Idaho National Engineering & Environmental Laboratory. PNGV Battery Test Manual. Revision 3, DOE/ID- 10597, 2001. http://owt.inl.gov/energy-storage-lib.html.
  • 5United States Idaho National Engineering & Environmental Laboratory. FreedomCAR Battery Test Manual for PowerAssist Hybrid Electric Vehicles. DOE/ID-11069, 2003.http://owt.inl.gov/energy-storage-lib.html.
  • 6United States Advanced Battery Consortium (USABC).USABC Electric Vehicle Battery Test Procedure Manual.Revision 2, DOE/ID-10479, 1996. http://owt.inl.gov/energy-storage-lib.html.
  • 7Johnson V H, Zolot M D, Pesaran A A. Development and validation of a temperature-dependent resistance capacitance battery model for ADVISOR. In: Proceedings of the 18th International Electric Vehicle Symposium, Berlin,2001. http://www.avere.org/what-is-avere, html.
  • 8蔡信,李波,汪宏华,聂亮.基于神经网络模型的动力电池SOC估计研究[J].机电工程,2015,32(1):128-132. 被引量:41

共引文献73

同被引文献60

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部