期刊文献+

基于腔扰动法的原子气室复介电常数估计 被引量:1

Estimation of Complex Permittivity of Atomic Vapor-Cell Using Cavity Perturbation Technique
下载PDF
导出
摘要 近年来,基于原子的微波测量因其具有将微波量转换为频率量进行测量的优势引起了学术界的广泛关注。由于频率量具有所有物理量中最高的测量精度,故这种新型微波测量手段具有极大的发展潜力。研究表明,目前限制微波测量精度的主要因素来自于微波场传感探头的原子气室本身。为了定量评估气室对场量测量的影响,该文首先准确评估了气室的结构尺寸和介电特性。作为原理性实验验证,采用S和X频段矩形微波腔扰动方法,对圆柱状原子气室的复介电常数做了测量评估。同时还简要讨论了其他可用于气室介电测量的方法。 Recently, atom-based microwave (MW) measurement has inspired great interest because of its potential ability to link the MW quantity with the international system of units (SI) second. The frequency has the highest measurement accuracy among all physical quantities, implying a great potential of atomic MW measurement. At present, the main factor limiting the measurement accuracy arises from atomic vapor-cell itself. In order to evaluate the effects of the vapor-cell on atom-based MW measurements, the structure parameters and permittivity of vapor-cell are firstly estimated in this paper. As a demonstration, the complex permittivity of a cylindrical vapor-cell is measured and evaluated through MW cavity perturbation technique at S and X bands. Finally, various methods used for the measurement of permittivity of vapor-cell are briefly discussed.
作者 郭广坤 张大年 李艺媚 侯冬 刘科 王厚军 孙富宇 GUO Guang-kun;ZHANG Da-nian;LI Yi-mei;HOU Dong;LIU Ke;WANG Hou-jun;SUN Fu-yu(School of Automation Engineering,University of Electronic Science and Technology of China Chengdu 611731)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期356-360,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61601084)
关键词 腔扰动技术 复介电常数 微波测量 原子气室 cavity perturbation technique complex permittivity microwave measurement vapor-cell
  • 相关文献

参考文献1

二级参考文献54

  • 1Hall J L 2006 Rev. Mod. Phys. 78 1279.
  • 2Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004.
  • 3Balabas M V, Karaulanov T, Ledbetter M P, Budker D 2010 Phys. Rev. Lett. 105 070801.
  • 4Wasilewski W, Jensen K, Krauter H, Renema J J, Bal- abas M V, Polzik E S 2010 Phys. Rev. Lett 104 133601.
  • 5Koschorreck M, Napolitano M, Dubost B, Mitchell M W 2010 Phys. Rev. Lett. 104 093602.
  • 6Wang P F, Ju C Y, Shi F Z, Du J F 2103 Chin. Sci. Bull. 58 2920.
  • 7Camparo J C 1998 Phys. Rev. Left. 80 222.
  • 8Swan-Wood T, Coffer J G, Camparo J C 2001 IEEE Trans. Inst. Meas. 50 1229.
  • 9Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169.
  • 10Sedlacek J A, Schwettmann A, Kubler H, Low R, Pfau T, Shaffer J P 2012 Nature Phys. 8 819.

共引文献23

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部