摘要
该文提出一种新型主成份分析(PCA)电子战信息一体化融合方案。该方案基于信息融合DS理论,采用PCA分析法对数据进行收集和降维处理;再对特征层数据建立基本信任分配函数,实现基于特征的数据融合;最后对电子战系统信息进行智能诊断和挖掘等,有效实现电子战系统中故障检测和分离。进一步,通过大数据挖掘对设备状态进行评估,及时发送给控制系统,实现作战过程中对作战战略的合理指导、预警管控,从而对多系统协同工作提供有力保障。
In this paper, a new type of principal component analysis (PCA) for electronic warfare information integration fusion scheme is presented. Based on DS theory of information fusion, the PCA method is used to collect data and reduce dimensions, and the basic trust distribution function is established for feature layer data to realize further based data fusion. The electronic warfare system information is intelligently diagnosed and mined to effectively achieve the fault detection and separation of electronic warfare system. Furthermore, the device status is evaluated and timely sent the control system through the big data mining, thus implementing the reasonable guidance and early warning and control for operational strategy in warfare procedure.
作者
郑德生
李晓瑜
蔡竟业
ZHENG De-sheng;LI Xiao-yu;CAI Jing-ye(School of Computer Science,Southwest Petroleum University Chengdu 610500;School of Information and Software Engineering,University of Electronic Science and Technology of China Chengdu 610054)
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2019年第3期409-414,共6页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学青年基金(61502082)
国家博后面上资助一等(2016M590880)
关键词
大数据
DS理论
多信息融合
多系统信息分析
主成份分析
big data
DS Theory
multiple information fusion
multi-system information analysis
principal component analysis