期刊文献+

社交网络突发事件传播速率模型研究 被引量:2

Research on the Emergency Events Propagation Rate Model Based on Social Network
下载PDF
导出
摘要 针对传统信息传播速率模型中对各因素描述不准确且仿真结果误差偏高的问题,该文提出了一种PPS信息传播速率计算模型。该模型选取Digg社交平台的数据集进行分析,拟合大量数据改进了传统模型中固有增长率及用户承载力的计算方法,并根据新闻投票量对新闻划分范围得到PPS模型,最后针对不同投票范围的新闻信息进行了仿真分析。仿真结果表明,在此平台上的新闻均经历增长期而到达稳定期,而通过传播速率分析图得出新闻在进入头版后增长速率最快。结合传统模型及算法进行准确率分析得到,该文提出的PPS模型在准确率上有了较大提升,证明提出的模型在分析社交平台的信息传播速率合理、有效。 According to the inaccurate description of various factors in the traditional information propagation rate model and the high error of simulation results, an information propagation rate model considering propagation speed (PPS) is proposed. First, the model selects the Digg social platform and analyzes the data set;Secondly, a large amount of data is used to improve the calculation method of intrinsic growth rate and user carrying capacity of the traditional model, then the PPS model is obtained according to the different news voting quantity, and finally the simulation analysis is carried out for different coverage stories. The simulation results show that the news on this platform has experienced the growth period and reached the stable period, and the speed of the news is the fastest after the front page is shown. Based on the traditional model and the algorithm, the proposed PPS model has a great improvement in accuracy, which proves that the model is reasonable and effective in analyzing the information transmission rate of the social platform.
作者 黄贤英 杨林枫 刘小洋 何道兵 刘广峰 阳安志 HUANG Xian-ying;YANG Lin-feng;LIU Xiao-yang;HE Dao-bing;LIU Guang-feng;YANG An-zhi(College of Computer Science and Engineering,Chongqing University of Technology Banan Chongqing 400054)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第3期462-468,共7页 Journal of University of Electronic Science and Technology of China
基金 重庆市教育委员会人文社会科学研究项目(17SKG144) 教育部人文社科青年基金(16YJC860010) 国家社会科学基金西部项目(17XXW004)
关键词 固有增长率 传播速率 社交平台 用户承载力 intrinsic growth rate propagation rate social platform user carrying capacity
  • 相关文献

参考文献6

二级参考文献57

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 2Boyd D, Ellison N B. Social network sites Definition history and scholarship. Journal of Computer Mediated Communication, 2007, 13(1): 210-230.
  • 3Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter//Proceedings of the Hawaii International Conference on System Sciences. Hawaii, USA, 2010 1 10.
  • 4Kwak H, Lee C, Park H, Moon S B. What is Twitter, a social network or a news media?//Proceedings of the World Wide Web Conference. Raleigh NC, USA, 2010:591 600.
  • 5Suh B, Hong L, Pirolli P, Chi E H. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network//Proceedings of the IEEE International Conference on Social Computing-SocialCom. Palo Alto, USA, 2010: 177-184.
  • 6Zaman T R, Herbrich R, van Gael J, Stern D. Predicting information spreading in Twitter//Proceedings of the Neural Information Processing Systems. Vancouver, Canada, 2010, 104(45) : 598-601.
  • 7Stern D, Herbrich R, Graepel T. Matchbox: Large scale online Bayesian recommendations//Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:111-120.
  • 8Yang Zi, Guo Jingyi, Cai Keke, et al. Understanding retweeting behaviors in social networks//Proceedings of the 19th International Conference on Information and Knowledge Management. Toronto, Canada, 2010:1633-1636.
  • 9Liben-Nowell D, Kleinberg J. Tracing information flow on a global scale using Internet chain letter data. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4633-4638.
  • 10Kossinets G, Kleinberg J, Watts D. The structure of infor- mation pathways in a social communication network// Proceedings of the 14th ACM SIGKDD. New York, USA, 2008:435-443.

共引文献140

同被引文献25

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部