期刊文献+

基于多个太赫兹时域光谱系统的物质识别方法 被引量:2

Substance identification based on multiple terahertz time-domain spectroscopy systems
下载PDF
导出
摘要 提出了一种基于多个太赫兹时域光谱系统(THz-TDS)的物质识别方法。将来自不同THz-TDS的光谱数据,通过小波变换去除基线及噪声等干扰信息,并用3次样条插值将不同的采样频率映射到相同的频率上,从而得到标准化后的光谱数据。将此光谱作为支持向量机(SVM)的特征向量,选择合适的核函数并用网格搜索法寻找最优SVM参数,最终得到98.33%的识别准确率。该方法对于准确识别物质具有重要的参考价值。 In this paper, we propose a substance identification method based on multiple terahertz time-domain spectroscopy (THz-TDS) systems. Spectral data from different THz-TDS systems were analyzed by wavelet transform to remove the noise and baseline. Then, the standardized data can be obtained by mapping the sampling frequencies to the same with cubic spline interpolation, which is used as the feature vector of the support vector machine (SVM). Finally, the spectral identification accuracy can be up to 98.33% with an appropriate kernel function and the optimization parameters based on grid search. These results are meaningful for the eventual practical application of exact substance identification.
作者 徐鸣谦 寇天一 彭滟 朱亦鸣 XU Mingqian;KOU Tianyi;PENG Yan;ZHU Yiming(Shanghai Key Laboratory of Modern Optical System,University of Shanghai forScience and Technology,200093 Shanghai,China)
出处 《光学仪器》 2019年第2期28-33,共6页 Optical Instruments
基金 上海市浦江人才计划(16PJD033) 上海市启明星人才计划(17QA1402500)
关键词 太赫兹波谱 物质识别 支持向量机 terahertz spectroscopy substance identification support vector machine
  • 相关文献

参考文献2

二级参考文献8

  • 1He Xiangning Yang Yuwen (Dept of Electrical Eng., Zhejiang University, Hangzhou 310027)Kuang Sheng(Department of Engineering, University of Cambridge, Cambridge, U.K.)Barry W. Williams Stephen J. Finney(Dept. of Computing & Electrical Eng., Heriot-Watt University, Edinburgh EH14 4AS, U.K.).COMPOSITE SOFT SWITCHING CONFIGURATION FOR INVERTERS USING BRIDGE LEG MODULES[J].Journal of Electronics(China),2001,18(1):61-69. 被引量:7
  • 2奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 3Sholkopf B,Sung K,Burges C J C,et al.Comparing support vector machine with Gaussian Kernels to radial basis function classifiers[J].IEEE Trans,Signal Processing,1997,45:2758-2765.
  • 4Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998(2):121-167.
  • 5Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1999.
  • 6Hsu C W.A practical guide to support vector classification[EB/OL].[2009-06-20].http://www.csie.ntu.edu.tw/-cjlin/papers/guide/guide.pdf.
  • 7LIBSVM-A library for support vector machines[EB/OL].[2009-06-07].http://www.csie.ntu.edu.tw/-cjlin/libsvm/.
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273

共引文献344

同被引文献40

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部