期刊文献+

Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C_3N_4 被引量:5

Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C_3N_4
下载PDF
导出
摘要 The Fe-based ionic liquid doped g-C_3N_4(Fee CN) photocatalyst was firstly prepared base on ultrathin g-C_3N_4 obtained by multiple calcination method with a metal-based reactive ionic liquid [Omim]FeCl_4 for the degradation of Rhodamine B(RhB). Experimental results revealed that Fe3+species were doped into the framework of g-C_3N_4. The effect of the amount of Fe-doping on the catalytic activity was performed. The result showed that the Fee CN could effectively degrade RhB under the condition of visible light irradiation. The photocurrent analysis showed that the incorporation of Fe^(3+)into g-C_3N_4 material could accelerate the separation of the photogenerated carriers significantly.At the same time, the reactive species generated during the photodegradation process were tested by radicals trapping experiments and electron spin resonance(ESR). It was proposed that the synergistic effect of■ and ·OH contributed to degrade RhB efficiently. The Fe-based ionic liquid doped g-C_3N_4(Fee CN) photocatalyst was firstly prepared base on ultrathin g-C_3N_4 obtained by multiple calcination method with a metal-based reactive ionic liquid [Omim]FeCl_4 for the degradation of Rhodamine B(RhB). Experimental results revealed that Fe3+species were doped into the framework of g-C_3N_4. The effect of the amount of Fe-doping on the catalytic activity was performed. The result showed that the Fee CN could effectively degrade RhB under the condition of visible light irradiation. The photocurrent analysis showed that the incorporation of Fe^(3+)into g-C_3N_4 material could accelerate the separation of the photogenerated carriers significantly.At the same time, the reactive species generated during the photodegradation process were tested by radicals trapping experiments and electron spin resonance(ESR). It was proposed that the synergistic effect of■ and ·OH contributed to degrade RhB efficiently.
出处 《Green Energy & Environment》 SCIE CSCD 2019年第2期198-206,共9页 绿色能源与环境(英文版)
基金 the financial support from the National Natural Science Foundation of China(No.21722604,21576122) Chinese Postdoctoral Science Foundation(No.2017M611726)
关键词 g-C3N4 [Omim]FeCl4 Photocatalytic Visible light Active species g-C3N4 [Omim]FeCl4 Photocatalytic Visible light Active species
  • 相关文献

同被引文献62

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部