期刊文献+

利用健肢sEMG信号对康复机械腿进行映射控制 被引量:5

Mapping Control of Rehabilitation Mechanical Legs Using sEMG Signals of Healthy Limbs
下载PDF
导出
摘要 研究了利用健肢表面肌电信号(sEMG)信号控制康复机械腿的问题。首先采集健全人在沿直线自然行走状态下,下肢八块肌肉的表面肌电信号和髋、膝、踝三个关节在矢状面内的关节角度信号,并对信号进行预处理、特征提取和标准化等操作;然后,建立了一个BP神经网络模型进行训练,将训练得到的神经网络模型用于关节角度的预测;最后以处理后的肌电信号作为模型输入,模型输出值经过移动均值滤波得到最终的关节角度预测值。再将此预测值作为机械腿的控制信号,实现机械腿的实时控制。实验结果显示,下肢三关节实际测量角度和预测值平均均方差(RMSE)为5.8295,平均皮尔逊相关系数(γ)为0.9312,可以较好实现机械腿的实时控制。 The problem of using the limb surface electromyography (sEMG) signal to control the rehabilitation mechanical leg was studied.Firstly,the surface EMG signals of the eight muscles of the lower limbs and the joint angle signals of the hip,knee and ankle joints in the sagittal plane were collected under the natural walking along the straight line,and the signal is preprocessed,characterized and standardized.Wait for the operation.Then,a BP neural network model is established for training,and the trained neural network model is used for the prediction of joint angle.Finally.the processed EMG signal is used as the model input,and the model output value is filtered by moving average to obtain the final joint angle prediction value.Then use this predicted value as the control signal of the mechanical leg to realize real-time control of the mechanical leg.The experimental results show that the average mean square error (RMSE) of the measured angles and predicted values of the lower limbs is 5.8295,and the average Pearson correlation coefficient (γ) is 0.9312,which can achieve real-time control of the mechanical legs.
出处 《工业控制计算机》 2019年第5期8-10,共3页 Industrial Control Computer
关键词 表面肌电信号(sEMG) BP神经网络 机械腿 实时控制 sEMG BP neural network mechanical legs real-time control
  • 相关文献

参考文献6

二级参考文献144

  • 1胡天培.肌电特征发现与肌电康复研究[J].上海交通大学学报,1994,28(3):151-153. 被引量:9
  • 2李芳 ,王人成 ,金德闻 .肌电信号及其运动模式辨识方法的发展趋势[J].中国康复医学杂志,2005,20(7):492-493. 被引量:6
  • 3王人成,杨巍,黄昌华,李波.肌电控制及肌电信号的分析处理[J].中国康复医学杂志,1996,11(6):261-263. 被引量:10
  • 4VUKOBRATOVIC M.Legged locomotion systems and anthropomorphic mechanisms.research monograph[M].Belgrade:Mihailo Pupin Institute,1975.
  • 5KAZEROONI H,RACINEA J L,HUANG L H,et al.On the control of the berkley lower extremityexoskeleton (bleex)[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation.2005:4353-4360.
  • 6KAWAMOTO H,LEE S W,KANBE S,et al.Power assist method for HAL-3 using EMG-based feedback controller[C]//Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.2003:1648-1653.
  • 7LEE S,SARIDIS G N.The control of a prosthetic arm by EMG pattern recognition[J].IEEE Transactions on Automatic Control,1984,AC-29:290-302.
  • 8FUKUDA D,TSUJI T,SHIQEYOSHI H,et al.An EMG controUed human supporting robot using neural network[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.1999:1586.1591.
  • 9MORITA S,KONDO T,ITO K.Estimation of forearm movement from EMG signal and application to prosthetic hand control[C]∥Proceedings of the IEEE International Conference on Robotics and Automation.2001:3692-3697.
  • 10LLOYD D G,BESIER T F.An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J].Journal of Biomechanics,2003,36:765-776.

共引文献172

同被引文献50

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部