期刊文献+

满足RoboCup规范小型类人足球机器人设计与目标识别 被引量:2

Design of kid size humanoid soccer robot meeting the RoboCup specification and its object detection
下载PDF
导出
摘要 设计了符合RoboCup技术规范的小型类足球机器人,并通过深度学习算法YOLO对比赛场地的目标进行训练和识别。分析了RoboCup技术规范对小型类人机器人设计的要求,设计并加工装配了满足要求的机器人。应用3000幅现场图片对深度学习神经网络进行训练,并对300幅不同于训练样本的图片进行识别,识别准确率为93. 8%,召回率为89. 7%,检测速度可达40 f/s。实验结果表明深度学习算法YOLO相比于其它算法应用于RoboCup足球机器人具有较好的鲁棒性和实时性。 A kid size soccer humanoid robot which meets RoboCup technical specification is designed, and the deep learning algorithm YOLO is trained to recognize the targets of the match field. The requirements of RoboCup technical specification for the design of small humanoid robot are analyzed, and the robot that meets the requirements is designed, processed and assembled. YOLO is trained with 3000 pictures of field objects and other 300 different pictures from training ones are identified. The experimental results show that the accuracy of the algorithm is 93.8%;the recall rate is 89.7%, and the detection speed can reach 40 frames per second. It shows that the deep learning algorithm YOLO has better robustness and real-time performance than other algorithms applied to RoboCup soccer robot in object detection.
作者 燕必希 王智 费奇 王子润 董明利 YAN Bixi;WANG Zhi;FEI Qi;WANG Zirun;DONG Mingli(School of Instrument Science and Optoelectronic Engineering,Beijing Information Science & Technology University, Beijing 100192,China)
出处 《北京信息科技大学学报(自然科学版)》 2019年第2期1-4,共4页 Journal of Beijing Information Science and Technology University
基金 国家高技术研究发展计划(863计划)(2015AA043208) 北京信息科技大学2018年人才培养质量提高项目(5111823205)
关键词 ROBOCUP YOLO 目标识别 鲁棒性 实时性 RoboCup YOLO object detection robustness real-time
  • 相关文献

参考文献3

二级参考文献20

  • 1James B, Tucker B, Meanuela V. Fast and inexpensive color image segment for interactive robots [A]. Shigeki S. Procee - dings of the 2000IEEE/RSJ Internation- al Conference on Intelligent Robots and Systems[C]. Takamatsu: Tsukuba Univ- ersity Press, 2000,2061 - 2066.
  • 2Bruce J, Balch T, Veloso M, Fast color image segmentation for interactive robots [A]. Proceedings of IROS 2000. [ C]. 2000.
  • 3Moreira J, Costa L F. Neural-based color image segmentation and classification using self-organizing maps[C]. IX SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing), Brazil, 1996.47-54.
  • 4Pieter Jonker. Fast and accurate robot vision for vision basedmotion[C].Proc 4th Int Workshop on Robocup(Melbourne, Australia),2000.
  • 5Sim(o)es A S, Costa Reali A H. Using neural color classification in robotic soccer domain[C]. Intemational Joint Conference IBERAMIA'2000 and SBIA'2000,Workshop Proc,Meeting on Perception,Planning,Execution,andLearing, 2000.
  • 6Brusey J, Padgham L. Techniques for obtaining robust, real-time, colour-based vision for robotics[C]. IJCAI-99 Proceedings of the Third International Workshop on Robocup, Stockholm, Sweden, 1999.
  • 7Bruce J, Balch T, Veloso M. Fast and inexpensive color image segmentation for interactive robots[C]. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 2061-2066.
  • 8Vadakkepat P, Sin N B, Goswami D. Soccer playing humanoid robots:processing architecture, gait generation and vision system [ J ]. Robotics and Autonomous Systems,2009,57:776-785.
  • 9Harris C, Stephens M. A combined corner and edge detector[ C ]//Manchester:Proceedings of the 4th Alvey Vision Conference. Manchester, UK :The University of Sheffield Printing Unit, 1988 : 147-151.
  • 10Lowe D G. Distinctive image features from scale-invariant key-points[ J]. International Journal of Computer Vision,2004,17 ( 1 ) : 43 -76.

共引文献19

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部