期刊文献+

基于遗传算法的毫米波大规模MIMO系统混合预编码 被引量:1

Genetic Algorithm Based Hybrid Precoding for Millimeter Wave Massive MIMO Systems
下载PDF
导出
摘要 目前混合预编码方案中,大多采取高精度的移相器作为模拟预编码的设计基础,使得系统成本增加。针对这一问题,探讨了有限精度射频前端的混合预编码设计。为了实现更高的频谱利用率,考虑到天线权值的最优组合为一NP(Non-deterministic Polynomial)问题,受机器学习启发,采用遗传算法对阵列中阵元的相位取值进行建模设计模拟预编码。通过信道矩阵与模拟预编码矩阵的乘积引入等效信道矩阵,考虑用户间干扰,以最大信干噪比准则进行数字预编码设计。仿真结果表明,该方案得到的混合预编码矩阵其系统性能可逼近全数字预编码矩阵的性能。 In current hybrid precoding schemes,most of the high-precision phase shifters are used as the design basis of the analog precoding,so that the system cost increases.For this problem,the hybrid precoding design of limited precision radio frequency(RF) front-end is discussed.In order to achieve higher spectrum utilization,considering that the optimal combination of antenna weights is a non-deterministic polynomial(NP) problem and inspired by machine learning,this paper uses genetic algorithm(GA) to model the phase values of the array elements.The equivalent channel matrix is introduced by the product of the channel matrix and the analog precoding matrix.In consideration of the inter-user interference,the digital precoding is carried out with the maximum signal to interference and noise ratio criterion.Simulation results verify that the proposed scheme can approximate the performance of the all-digital precoding matrix.
作者 申敏 石晓枫 何云 SHEN Min;SHI Xiaofeng;HE Yun(School of Information and Communication Engineering,Chongqing University of Posts andTelecommunications,Chongqing 400065,China)
出处 《电讯技术》 北大核心 2019年第5期501-506,共6页 Telecommunication Engineering
基金 国家科技重大专项(2018ZX03001026-002)
关键词 毫米波大规模MIMO系统 混合预编码 遗传算法 milimeter wave massive MIMO system hybrid precoding genetic algorithm
  • 相关文献

参考文献1

二级参考文献30

  • 1赵振,严隽薇,刘敏,刘钢.一种基于双线性链表结构编码的遗传算法[J].计算机应用,2009,29(2):554-557. 被引量:4
  • 2滕皓,邵阔义,曹爱增,杨炳儒.量子遗传算法的变尺度混沌优化策略研究[J].计算机应用研究,2009,26(2):543-545. 被引量:5
  • 3李英华,王宇平.有效的混合量子遗传算法[J].系统工程理论与实践,2006,26(11):116-124. 被引量:14
  • 4CHOI J N,OH S K,PEDRYCZry W.Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation[J].Applied Mathematical Modelling,2009,33(6):2791-2807.
  • 5WHITLEY D,MATHIAS K,FTTZHORN P.Delta coding:an iterative search strategy for genetic algorithms[C] //Proc of the 4th International Conference on Genetic Algorithms.San Francisco:Morgan Kaufmann Pulisher,1991:77-84.
  • 6MEI D,DU X,CHEN Z.Optimization of dynamic parameters for a traction-type passenger elevator using a dynamic byte coding genetic algorithm[J].Journal of Mechanical Engineering Science,2009,223(3):595-605.
  • 7ZHANG Tao,ZHANG Yue-jie.A mixed integer programming model and improved genetic algorithm for order planning of iron-steel plants[J].Information and Management Sciences,2008,19(3):413-435.
  • 8WEI Dong,ZANCHETTA P,THOMAS D W P.Identification of electrical parameters in a power network using genetic algorithms and transient measurements[J].International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2010,29(1):235-249.
  • 9MICHALEWICZ Z,JANIKOW C Z,KRAWCZYK J B.A modified genetic algorithm for optimal control problems[J].Computers & Mathematics with Application,1992,23(12):83-89.
  • 10MICHALEWICZ Z.Genetic algorithms + data structures = evolution programs[M].Berlin:Springer-Verlag,1996.

共引文献102

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部