期刊文献+

时变二次规划的高精度数值算法

Numerical Algorithm With High Computational Precision for Time-Varying Quadratic Program
下载PDF
导出
摘要 提出一种用于求解时变二次规划问题的高精度数值算法.首先,给出求解时变二次规划问题的连续模型;然后,采用新型泰勒差分公式将连续模型离散,得到具有高计算精度的数值算法;最后,通过理论分析和仿真实验表明该数值算法的优越性和有效性,并将所提出的数值算法应用于一个五连杆机械臂的运动控制中.研究结果表明:所提算法的计算稳态误差与采样间隔τ具有O(τ~4)的关系,该数值算法既可以有效地求解时变二次规划问题,又能有效地应用于机械臂的运动控制. A high precision numerical algorithm is proposed to solve the problem of time-varying quadratic program. Firstly, the continuous-time model for time-varying quadratic program is given. Secondly, the numerical algorithm with a high computational precision is then derived by employing a new Taylor difference formula to discretize the above continuous-time model. Finally, the theoretical analysis and simulational experiments further indicate the superiority and effectiveness of the proposed numerical algorithm, and the proposed algorithm is applied to the motion control of a five-link robot manipulator. The results show that the calculated steady-state error of the proposed algorithm has a relationship of O(τ~4) with the sampling interval τ, this numerical algorithm can both effectively solve the time-varying quadratic programming problem and apply to the motion control of the manipulator.
作者 李泽昕 徐凤 张孟玄 郭东生 LI Zexin;XU Feng;ZHANG Mengxuan;GUO Dongsheng(College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China)
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2019年第3期405-411,共7页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(61603143) 福建省自然科学基金资助项目(2016J01307) 华侨大学中青年教师资助计划项目(ZQN-YX402) 华侨大学研究生科研创新能力培育计划资助项目(17013082041) 高层次人才科研启动项目(15BS410)
关键词 时变二次规划 数值算法 泰勒差分公式 机械臂 运动控制 time-varying quadratic program numerical algorithm Taylor difference formula robot manipulator motion control
  • 相关文献

参考文献6

二级参考文献52

  • 1罗承先.世界风力发电现状与前景预测[J].中外能源,2012,17(3):24-31. 被引量:77
  • 2李烁,徐元铭,张俊.基于神经网络响应面的复合材料结构优化设计[J].复合材料学报,2005,22(5):134-140. 被引量:31
  • 3YE Y Y. Approximating global quadratic programming with convex quadratic constraints[J]. Journal of Global Opti mization, 1999,15(1) : 1-17.
  • 4KOZLOV M K,TARASOV S P,KHACHIYAN L G. Polynomial solvability of convex quadratic programming[J]. Dokl Akad Nauk SSSR, 1979,248(5) : 1049-1051.
  • 5PARDALOS P M, VAVASIS S A. Qradratic programming with one negative eigenvalue is NP-hard[J]. Global Op tim, 1991,1(1) : 15-22.
  • 6SHERALI H D, TUNCBOLEK C H. A reformulation-convexification approach for solving nonconvex quadratic pro gramming problems[J]. Global Optim, 1995,7 (1) : 1-31.
  • 7ANSTREICHER K M. Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming[J]. Glob Optim, 2009,43(2/3) : 471-484.
  • 8TIM V V, FAIZ A A. Difference of convex solution of quadratically constrained optimization problems[J]. European Journal of Operational Research, 2003,148 : 349-362.
  • 9QU Shao-jian, ZHANG Ke-cun, JI Ying. A global optimization algorithm using parametric linearization relaxation[J]. Applied Mathematics and Computation,2007,186(1):763-771.
  • 10XIA You-shen, FENG Gang, WANG Jun. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J]. Neural Networks, 2004,17 (7) : 1003-1015.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部