期刊文献+

基于KFCM增量更新的无线电引信目标识别方法 被引量:1

Target recognition method for radio fuze based on KFCM algorithm with incremental update
下载PDF
导出
摘要 针对传统无线电引信在复杂电磁环境下作用效果较差的问题,以连续波多普勒引信为例,通过对引信检波输出信号频域的分析,提出一种基于熵的特征提取方法,并利用KFCM算法对信号进行分类识别。由于实际战场环境复杂且不可预测,其背景噪声强度与实验环境下存在差异,因此结合KFCM增量更新特性,使分类模型根据噪声强度变化而实时更新调整,从而达到更好的分类效果。实验结果证明,基于增量更新KFCM算法能显著提高不同信噪比下引信目标识别能力,将KFCM增量更新算法运用到无线电引信抗干扰能取得良好效果。 The complex electromagnetic environment is a great threat to radio fuze,taking continuous wave Doppler radio fuze for example,a method based on frequency entropy by analyzing the frequency domain characteristic fuze detection output signal is proposed.The KFCM algorithm is used for classifying and recognizing target signal and jamming signal.As the end trajectory characteristic of fuze determines the fact that the received jamming signal power increase rapidly and the signal-to-noise ratio gets worse.Thus,combined with the KFCM incremental update model,the classification model is adjusted in real time according to signal-to-noise ratio to get a better effect.The result of experiment indicate that the KFCM algorithm with incremental update has good effect on the classification and recognition of target signal at different signal-to-noise ratio,and it can effectively improve the ability of anti-jamming of radio fuze.
作者 代健 郝新红 贾瑞丽 陈齐乐 刘金烨 Dai Jian;Hao Xinhong;Jia Ruili;Chen Qile;Liu Jinye(Science and Technology on Electromechanical Dynamic Control Laboratory,Beijing Institute of Technology,Beijing 100081,China)
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2019年第6期61-67,共7页 High Power Laser and Particle Beams
基金 国防“973”计划项目(613196)
关键词 复杂电磁环境 KFCM算法 增量更新 无线电引信 目标识别 complex electromagnetic environment KFCM algorithm incremental update radio fuze target recognition
  • 相关文献

参考文献4

二级参考文献45

  • 1艾娜,马伯渊.外差式连续波多普勒引信干扰波形设计[J].航天制造技术,2004(6):39-43. 被引量:3
  • 2王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 3张飞鹏.地面低速目标与背景模式分类和识别方法研究[J].探测与控制学报,2007,29(2):8-11. 被引量:2
  • 4Sherlock B G. Wavelet based feature extraction for target recognition and minefield detection, ADA401966[R]. National Technical Information Service, 2002.
  • 5Elif, Derya, beyli. Wavelet/mixture of experts' network structure for EEG signals classification [J]. Expert Systems with Applications. 2008, 34 (3) :1954- 1962.
  • 6Serhat Seker, Emine Ayaz. Feature extraction related to bearing damage in electric motors by wavelet analysis[J].Journal of The Franklin Institute, 2003, 340(2):125-134.
  • 7A Hossen, F A1-Wadahi, J A Jervase. Classification of modulation signals using statistical signal characterization and artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2007,20(4) :463-472.
  • 8Lin,jiang. Feature extraction of machine sound using wavelet and its application in fault diagnosis [J]. NDT and E internation,2001,34(1):25-30.
  • 9YANG Xuezhi, PANG Grantham, YUNG Nelson. Discriminative training approaches to fabric defect classification based on wavelet transform[J]. Pattern Recognition, 2004,37(5) :889 - 899.
  • 10Cowling Michael, Sitte Renate. Comparison of techniques for environmental sound recognition[J].Pattern Recognition Letters, 2003,24 (15) : 2895 - 2907.

共引文献22

同被引文献32

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部