期刊文献+

基于网络表示学习的科研合作推荐研究 被引量:20

Scientific Collaboration Recommendation Based on Network Embedding
下载PDF
导出
摘要 为了促进同一学术领域的科研合作团队的组建,提高科研效率,本文基于网络表示学习对多个领域科研合作推荐模型进行研究。将基于节点位置的网络表示学习模型与融合网络结构的网络表示学习模型进行集成,得到新的顶点表示,对两个顶点的表示进行选择二元运算得到边的表示。模型将网络表示学习与机器学习相结合,将节点对的表示作为特征训练逻辑分类器,分类器得到的标签即为链接预测结果。通过对金融和物理领域的论文合作数据进行分析,构建科研合作网络。实验证明,提出的集成模型在AUC值上的表现比单一模型更好,效果最高提升了2.3%;在训练集规模较小的情况下,AUC值仍能达到60%。实验结果表明,该科研合作推荐模型具有可行性,对同一学术领域的科研合作团队的组建能够起到有效辅助作用。 This paper researched a scientific collaboration recommendation model in the financial field based on network embedding to promote the formation of a research team in the same research field and improve the efficiency of research.The model integrates two types of network embedding models;one of these is based on the location of vertices, while the other is integrated with network structure. A binary operator for the representation of two vertices was employed to gener‐ate a representation of edge. Combining network embedding and machine learning, the model trained a logic regression classifier with the representation of edges as features, and the labels acquired from the classifier were the results of link pre‐diction. By analyzing papers in the financial and physical research fields, several scientific collaboration networks were constructed. The experiments confirm that the proposed integrated model has achieved better performance than single mod‐els on the value of AUC, with the efficiency improved by up to 2%;even on a small training set, the value of AUC still reached 60%. The proposed model proved to be feasible in scientific collaboration recommendation, which will effectively promote the formation of a research team in the same field.
作者 余传明 林奥琛 钟韵辞 安璐 Yu Chuanming;Lin Aochen;Zhong Yunci;An Lu(School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073;School of Information, Wuhan University, Wuhan 430072)
出处 《情报学报》 CSSCI CSCD 北大核心 2019年第5期500-511,共12页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金面上项目"大数据环境下基于领域知识获取与对齐的观点检索研究"(71373286)
关键词 科研合作推荐 链接预测 网络表示学习 机器学习 深度学习 scientific collaboration recommendation link prediction network embedding machine learning deep learning
  • 相关文献

参考文献5

二级参考文献45

  • 1Yin Z, Gupta M, Weninger T, Han J. LINKREC: A unified framework for link recommendation with user attributes and graph structure//Proeeedings of the 19th International Conference on World Wide Web. New York, USA, 2010 1211-1212.
  • 2Dimicco J, et al. Motivations for social networking at work// Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work. California, USA, 2008:711 720.
  • 3Guy I, Ronen I, Wilcox E. Do you know? Recommending people to invite into your social network//Proceedings of the 14th International Conference on Intelligent User Interfaces. Florida, USA, 2009:77-86.
  • 4Lv L, et al. Recommender systems. Physics Reports, 2012, 519(1) : 1-49.
  • 5Lv L, Zhou T. Link prediction in complex networks: A survey. Physiea A, 2011, 390(6): 1150-1170.
  • 6Liu Y B, et al. Simplifying friendlist management// Proceedings of the 21st International World Wide Web Conference. Lyon, France, 2012:385-388.
  • 7MeAuley J, Leskovec J. Learning to discover social circles in ego networks//Proceedings of the Neural Information Proeessing Systems. Lake Tahoe, USA, 2012 : 548-556.
  • 8Yoshida T. Toward finding user profiles//Proceedings Conference on Data Mining 2010:380-387 hidden communities based on of the IEEE International Workshops. Sapporo, Japan,.
  • 9Mislove A, et al. You are who you know: Inferring user profiles in Online Social Networks//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA, 2010:251 260.
  • 10Ahn Y Y, Bagrow J P, Lehmann S. IAnk communities reveal multiscale complexity in networks. Nature, 2010, 466 ('/307): 761 764.

共引文献120

同被引文献271

引证文献20

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部