摘要
An organic macromolecule, poly(1-vinylimidazole), with an appropriate polymerization degree was proposed and mixed with water to form a novel aqueous absorbent for SO_2 capture. This aqueous solution absorbent has the advantages of simple preparation, good physicochemical properties, environment-friendliness, high ability in deep removal of SO_2, and excellent reusability. Moreover, pH-responsive behavior, pH buffering absorption mechanism, and their synergistic effect on absorption performance were revealed. The solubilities of SO_2 in the absorbent were measured in detail, and the results demonstrated excellent absorption capacity and recyclability. Then, mathematic models that describe SO_2 absorption equilibrium were established, and the corresponding parameters were estimated. More importantly, on the basis of model and experimental data, the absorption and desorption could maintain high efficiency within a wide operating region. In summary, this work provided a low-cost, efficient, and unique absorbent for SO_2 capture and verified its technical feasibility in industrial application.
An organic macromolecule, poly(1-vinylimidazole), with an appropriate polymerization degree was proposed and mixed with water to form a novel aqueous absorbent for SO_2 capture. This aqueous solution absorbent has the advantages of simple preparation, good physicochemical properties, environment-friendliness, high ability in deep removal of SO_2, and excellent reusability. Moreover, pH-responsive behavior, pH buffering absorption mechanism, and their synergistic effect on absorption performance were revealed. The solubilities of SO_2 in the absorbent were measured in detail, and the results demonstrated excellent absorption capacity and recyclability. Then, mathematic models that describe SO_2 absorption equilibrium were established, and the corresponding parameters were estimated. More importantly, on the basis of model and experimental data, the absorption and desorption could maintain high efficiency within a wide operating region. In summary, this work provided a low-cost, efficient, and unique absorbent for SO_2 capture and verified its technical feasibility in industrial application.
基金
supported by the National Key R&D Program of China (No. 2016YFC0400406)