期刊文献+

Novel Pt-Ni Bimetallic Catalysts Pt(Ni)-LaFeO_3/SiO_2 via Lattice Atomic-Confined Reduction for Highly Efficient Isobutane Dehydrogenation 被引量:1

Novel Pt-Ni Bimetallic Catalysts Pt(Ni)-LaFeO_3/SiO_2 via Lattice Atomic-Confined Reduction for Highly Efficient Isobutane Dehydrogenation
下载PDF
导出
摘要 In this study, a series of novel Pt-Ni bimetallic catalysts supported on LaFeO_3/SiO_2 with different amounts of Ni were prepared by the lattice atomic-confined reduction of LaFe_(1-x)(Ni, Pt)_xO_3/SiO_2 perovskite precursors and applied in isobutane dehydrogenation to isobutene reaction. The catalysts were characterized by X-ray diffraction, H_2-temperature-programmed reduction, Brunauer-Emmett-Teller analysis, transmission electron microscopy, energy dispersive X-ray, CO chemisorption, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The as-synthesized Pt-Ni bimetallic catalysts possessed smaller most probable particle size with tunable Pt-Ni interaction, depending on the Ni content. The catalyst with Ni content of 3.0 wt% showed excellent activity and stability(the isobutane conversion and isobutene selectivity remained at about 38% and 92%, respectively, after 310 min) for the isobutane dehydrogenation reaction. It also provided approximately six times turnover frequency of the catalyst without Ni. The excellent activity and stability of the 3.0 wt% Ni-containing catalyst can be attributed to its small metal nanoparticles with high dispersion and suitable Pt-Ni interaction. Moreover, the Pt(Ni)-LaFeO_3/SiO_2 catalyst with Ni content of 3.0 wt% had been run for more than 35 h without obvious loss of activity,indicating its long-term stability, and the decrease in the Pt-Ni interaction that accompanied the formation of the FeNi alloy phase was thought to be responsible for the slight decrease in activity. In this study, a series of novel Pt-Ni bimetallic catalysts supported on LaFeO_3/SiO_2 with different amounts of Ni were prepared by the lattice atomic-confined reduction of LaFe_(1-x)(Ni, Pt)_xO_3/SiO_2 perovskite precursors and applied in isobutane dehydrogenation to isobutene reaction. The catalysts were characterized by X-ray diffraction, H_2-temperature-programmed reduction, Brunauer-Emmett-Teller analysis, transmission electron microscopy, energy dispersive X-ray, CO chemisorption, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The as-synthesized Pt-Ni bimetallic catalysts possessed smaller most probable particle size with tunable Pt-Ni interaction, depending on the Ni content. The catalyst with Ni content of 3.0 wt% showed excellent activity and stability(the isobutane conversion and isobutene selectivity remained at about 38% and 92%, respectively, after 310 min) for the isobutane dehydrogenation reaction. It also provided approximately six times turnover frequency of the catalyst without Ni. The excellent activity and stability of the 3.0 wt% Ni-containing catalyst can be attributed to its small metal nanoparticles with high dispersion and suitable Pt-Ni interaction. Moreover, the Pt(Ni)-LaFeO_3/SiO_2 catalyst with Ni content of 3.0 wt% had been run for more than 35 h without obvious loss of activity,indicating its long-term stability, and the decrease in the Pt-Ni interaction that accompanied the formation of the FeNi alloy phase was thought to be responsible for the slight decrease in activity.
出处 《Transactions of Tianjin University》 EI CAS 2019年第3期245-257,共13页 天津大学学报(英文版)
基金 supported by National Natural Science Foundation of China (No. 21776214) State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, China
关键词 PEROVSKITE ISOBUTANE DEHYDROGENATION ISOBUTENE Pt-Ni interaction Silica Perovskite Isobutane dehydrogenation Isobutene Pt-Ni interaction Silica
  • 相关文献

参考文献3

二级参考文献52

共引文献22

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部