摘要
The present exploration is conducted to describe the motion of viscous fluid embedded in squeezed channel under the applied magnetics effects.The processes of heat and mass transport incorporate the temperature-dependent binary chemical reaction with modified Arrhenius theory of activation energy function which is not yet disclosed for squeezing flow mechanism.The flow,heat and mass regime are exposed to be governed via dimensionless,highly non-linear,ordinary differential equations (ODEs) under no-slip walls boundary conditions.A well-tempered analytical convergent procedure is adopted for the solutions of boundary value problem.A detailed study is accounted through graphs in the form of flow velocity field,temperature and fluid concentration distributions for various emerging parameters of enormous interest.Skin-friction,Nusselt and Sherwood numbers have been acquired and disclosed through plots.The results indicate that fluid temperature follows an increasing trend with dominant dimensionless reaction rate σ and activation energy parameter E.However,an increment in σ and E parameters is found to decline in fluid concentration.The current study arises numerous engineering and industrial processes including polymer industry,compression and injection shaping,lubrication system,formation of paper sheets,thin fiber,molding of plastic sheets.In the area of chemical engineering,geothermal engineering,cooling of nuclear reacting,nuclear or chemical system,bimolecular reactions,biochemical process and electrically conducting polymeric flows can be controlled by utilizing magnetic fields.Motivated by such applications,the proposed study has been developed.
研究了在外加磁场作用下,黏性流体在压缩通道中的运动规律。热量和质量传输过程涉及温度依赖的二元化学反应和修正的Arrhenius活化能函数理论,但是该理论尚未揭示挤压流动机理。在无滑移壁边界条件下,流场、热场和质量场通过无量纲、高度非线性的常微分方程来控制。采用一种收敛性稳定的解析方法求解边值问题。对各种新出现参数的流速场、温度场和流体浓度分布的图进行了详细的研究,获得了表面摩擦、Nusselt和Sherwood数并以图表形式表现。结果表明,流体温度随着占主导地位的无量纲反应速率σ和活化能E的增加而升高。然而,σ和E的增加随着流体浓度的增加而下降。当前研究应用于许多工程和工业过程包括聚合物工业、压缩和注塑成型、润滑系统、纸张的生产、塑料薄膜的成型。在化学工程和地热领域,可以利用磁场来控制核冷却反应、核或化学系统、双分子反应、生化过程和导电聚合物流动。在这些应用的推动下,此研究已得到发展。