期刊文献+

LDPC码基于双修正因子的剩余度置信传播译码算法 被引量:2

Two correction factors based residual belief-propagation algorithm for LDPC codes
下载PDF
导出
摘要 通过对LDPC码的RBP和NWRBP译码算法进行研究,针对算法在译码过程中运算量过大,不利于在硬件上实现的问题,提出一种改进型的RBP和NWRBP译码算法。该算法在更新从检验节点到变量节点的信息时,采用最小和算法得出近似值,以此降低译码复杂度。同时,为了弥补近似值所带来的译码性能损失,引入乘性修正因子和加性修正因子来提高译码性能。 The residual belief-propagation(RBP)and node-wise residual belief-propagation(NWRBP)decoding algorithm for low-density parity-check(LDPC)codes is researched,but it has excessive computing amount in decoding process,and is difficult to implement with hardware.Therefore,the improved RBP and NWRBP decoding algorithm are proposed.When the algorithm is used to update the information from check nodes to variable nodes,the Min-Sum(MS)algorithm is adopted to obtain the approximate value,so as to reduce the complexity of decoding.In the meanwhile,in order to compensate for the decoding performance loss caused by the approximate value,the multiplicative correction factor and additive correction factor are introduced to improve the decoding performance successfully.
作者 周华 赵良 李诚谦 ZHOU Hua;ZHAO Liang;LI Chengqian(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing 210044,China;Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing 210044,China)
出处 《现代电子技术》 北大核心 2019年第11期15-18,23,共5页 Modern Electronics Technique
基金 国家自然科学基金(61401216) 江苏高校优势学科Ⅱ期建设工程资助项目~~
关键词 LDPC码 RBP算法 NWRBP算法 最小和算法 修正因子引入 信息更新 low-density parity-check code residual belief-propagation algorithm node-wise residual belief-propagation algorithm Min-Sum algorithm correction factor introduction information updating
  • 相关文献

参考文献4

二级参考文献33

  • 1李丹,白宝明,孙蓉.多元LDPC码与二元LDPC码的性能比较[J].无线通信技术,2007,16(3):1-6. 被引量:10
  • 2Gallager R G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
  • 3MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645-1646.
  • 4Chung S Y, Forney G D, Richardson, et al. On the design of low-density parity-check codes within 0.004 5 dB of the Shannon limit. IEEE Communieations Letters, 2001,5(2):58-60.
  • 5Kang S, Moon J. Parallel LDPC decoder implementation on GPU based on unbalanced memory coalescing. Proceedings of 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canda, 2012:3692-3697.
  • 6Hu W, Wen J, Wu W, et ol. Highly scalable parallel arithmetic coding on multi-core processors using LDPC codes. IEEE Transactions on Communications, 2012, 60(2): 289-294.
  • 7Balatsoukas-Stimming A, Dollas A. FPGA-based design and implementation of a multi-GBPS LDPC decoder. Proceedings of 2012 IEEE 22nd International Conference on Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012:262-269.
  • 8Perabia E, Gong M X. Gigabit wireless LAN: an overview of IEEE 802.11ac and 802.11ad. ACM SIGMOBILE Mobile Computing and Communications Review, 2011, 15(3): 23-33.
  • 9Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications, 1999,47(5):673-680.
  • 10Oh D, Parhi K K. Min-sum decoder architectures with reduced word length for LDPC codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(1): 105-115.

共引文献9

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部