期刊文献+

基于Kalman滤波与Camshift算法的水面目标跟踪 被引量:5

Water surface target tracking based on Kalman filtering and Camshift algorithm
下载PDF
导出
摘要 根据水面监控图像的特点,对运动载体采集到的水面视频图像进行处理,从而实现对运动目标的跟踪。首先,利用Haar分类器检测出水面的运动目标,并用检测结果初始化Camshift跟踪器的搜索窗口;然后,运用Kalman滤波器与Camshift组合算法实现对运动目标的跟踪。其中,利用Kalman滤波算法预测目标在下一帧中出现的位置,Camshift算法用来跟踪目标,以此减小搜索范围,提高跟踪效率。实验结果表明,该算法能够实现对水面运动舰船的检测并进行有效跟踪。 According to the characteristics of the water surface monitoring image,the water surface video images collected by the motion carrier are processed to realize the tracking of the moving target.The Haar classifier is used to detect the moving target on the water surface,and the detection results are used to initialize the search window of Camshift tracker.The Kalman filter and Camshift combination algorithm is used to track the moving targets,in which the Kalman filtering algorithm is used to predict the location of the target appeared in the next frame,and the Camshift algorithm is used to track the targets to reduce the search range and improve the tracking efficiency.The experimental result shows that the algorithm can effectively detect and track the ships on the water surface.
作者 卢道华 汪建秘 王佳 LU Daohua;WANG Jianmi;WANG Jia(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)
出处 《现代电子技术》 北大核心 2019年第11期68-71,共4页 Modern Electronics Technique
基金 产学研联合创新基金:前瞻性联合重大研究项目(BY2013093)~~
关键词 水面目标 检测 跟踪 KALMAN滤波器 CAMSHIFT算法 状态向量 water surface target detection tracking Kalman filter Camshift algorithm state vector
  • 相关文献

参考文献4

二级参考文献33

  • 1王春柏,赵保军,何佩琨,史彩成.基于多C64x的视频跟踪器设计与实现[J].信号处理,2004,20(3):307-310. 被引量:4
  • 2孔渊,崔洪洲,周起勃.多光谱图像配准实时处理技术研究[J].红外技术,2004,26(4):41-44. 被引量:6
  • 3宋华军,朱明,胡硕.实时目标跟踪系统处理平台设计及快速算法研究[J].电子器件,2004,27(3):474-477. 被引量:3
  • 4[1]Moscheni F. Spatio-temporal segmentation and object tracking:An application to second generation video coding[D]. Lausanne: Swiss Federal Institute of Technology, 1997.
  • 5[2]Denzler J, Niemann H. Combination of simple vision modules for robust real-time motion tracking[J]. European Transaction on Telecommunications, 1995,6(3):121~137.
  • 6[3]Taubin G, Cooper D B. Object recognition based on moment(or algebraic) invariants[M]. MIT Press, 1992:375~397.
  • 7[4]Shalom Y B, Fortmann T E. Tracking and data association[M]. Academic Press, Inc., 1988.
  • 8Numrniaro K, Koller-Meier E, van Gool L. Anadaptive Color-Based Particle Filter [J]. Image and Vision Computing, 2003,21(1):99-110.
  • 9Comaniciu D, Rarnesh V, Meer R. Real-Time Tacking of Nonrigid Objects Using Mean Shift[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition, 2000:142-149.
  • 10Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface[J]. Intel Technology Journal, 1998 (Q2) : 1-15.

共引文献57

同被引文献70

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部