期刊文献+

扩展有限元法在疲劳裂纹扩展模拟中的应用 被引量:5

Application of Extended Finite Element Method in Fatigue Crack Growth Simulation
下载PDF
导出
摘要 随着计算机技术的发展,有限元仿真技术被大量应用于疲劳计算中。然而,在进行疲劳分析时,常规有限元法往往对于网格的划分限制较大,工作量大,效率低。文章采用扩展有限元法对疲劳裂纹扩展进行仿真分析,简化了网格划分过程,并通过与试验结果的对比,证明了该方法的准确性。 With the development of computer technology, finite element simulation technology is widely used in fatigue calculation. However, in the fatigue analysis, the conventional finite element method often has great restrictions on the division of grid, heavy workload and low efficiency. In this paper, the fatigue crack growth is simulated and analyzed using the Extended Finite Element Method (XFEM), the process of meshing is simplified, and the accuracy of the method is proved by comparing with the experimental results.
作者 张芮晨 ZHANG Ruichen
出处 《科技创新与应用》 2019年第18期11-13,共3页 Technology Innovation and Application
关键词 扩展有限元 疲劳裂纹扩展 仿真分析 Extended Finite Element Method (XFEM) fatigue crack growth simulation analysis
  • 相关文献

参考文献3

二级参考文献28

  • 1李树忱,程玉民,李术才.扩展的无网格流形方法[J].岩石力学与工程学报,2005,24(12):2065-2073. 被引量:9
  • 2余天堂.含裂纹体的数值模拟[J].岩石力学与工程学报,2005,24(24):4434-4439. 被引量:27
  • 3李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(2:数值实现)[J].计算力学学报,2006,23(3):317-323. 被引量:8
  • 4方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:66
  • 5HUYNH J, MOLENT L, BARTER S. Experimentally derived crack growth models for different stress concentration factors[J]. International Journal of Fatigue, 2008, 30(10- 11): 1766- 1786.
  • 6BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 45(5): 601-620.
  • 7SUKUMAR N. Modeling quasi-static crack growth with fmite element method Part I: Computer Implementation[J].International Journal of Solids and Structures, 2003, 40(26): 7513-7537.
  • 8MOSE N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813 - 833.
  • 9BELYTSCHKO T, GRACIE ROBERT applications to dislocations and On XFEM interfaces[J]. International Journal of Plasticity, 2007, 23(10-11) 1721 -1738.
  • 10MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Method in Engineering, 1999, 46(1): 131 - 150.

共引文献59

同被引文献35

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部