摘要
针对传统神经网络收敛速度慢、容易陷入局部极值的问题,文中提出一种改进型小波神经网络以实现网络全局最优化。首先,将小波神经网络与随机矢量函数连接型网络相融合构建一种新型小波链神经网络( NW-FLNN);其次,以小波基函数作为NW-FLNN的隐含层的传递函数,并利用梯度修正法训练该模型各参数;最后,选用澳大利亚新南威尔士州电价数据作为实验数据集,分别对 NW-FLNN神经网络、逆传播 B P神经网络与小波神经网络进行预测性能比较。实验结果表明:该新型网络预测模型较B P神经网络与小波神经网络性能更优,可明显减少网络迭代次数与隐层神经元数目,且平均百分比误差最大降低至0. 0317,满足实时性要求。
In order to solve the problem that the traditional neural network has slow convergence rate and may easily fall into local extreme,this paper proposes an improved wavelet neural network to realize the global optimization of the network. Firstly,a new wavelet functional link neural network( NW-FLNN) is constructed by combining the wavelet neural network with the random vector functional link net. Secondly,the wavelet basis function is used as the transfer function of the hidden layer of NW-FLNN,and the gradient correction method is conducted to train each parameter of the model. Finally,the electricity price data of New South Wales in Australia is selected as the experimental dataset,and the prediction performances of the NW-FLNN neural network,the back propagation BP neural network and the wavelet neural network are respectively compared. The experimental results show that the new network prediction model has better performance than BP neural network and wavelet neural network,and can significantly reduce the number of network iterations and hidden layer neurons,and the average percentage error is reduced to 0. 0317,which meets the real-time requirements.
作者
杨春霞
王耀力
王力波
常青
Yang Chunxia;Wang Yaoli;Wang Libo;Chang Qing(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《电测与仪表》
北大核心
2019年第10期82-86,98,共6页
Electrical Measurement & Instrumentation
基金
全国工程专业学位研究生教育指导委员会立项项目(2016-ZX-095)
山西省自然科学基金资助项目(201801D121141)
关键词
小波神经网络
随机矢量函数连接型网络
新型小波链神经网络
电价预测
wavelet neural network
random vector functional link net
new wavelet functional link neural network
elec-tricity price forecasting