期刊文献+

认知无线网络的Rubinstein博弈频谱共享方法研究 被引量:1

Rubinstein Game Spectrum Sharing Algorithm for Cognitive Radio
下载PDF
导出
摘要 针对传统的功率控制算法限制认知用户的发射功率而影响其服务质量(Quality of Service, QoS)的问题,提出了一种基于功率控制的多人Rubinstein博弈频谱分配算法。该算法通过牛顿迭代公式降低认知用户的发射功率并依据各个用户间的干扰得到相应的链路质量;将经济学中的贴现因子与用户的链路质量建立映射关系;通过链路质量调整认知用户子博弈顺序使得网络总传输速率达到一个相对稳定的状态。仿真结果表明:多个认知用户在同一信道下共享频谱时,采用多人Rubinstein博弈算法对系统的总传输速率有明显的提升,使系统处于稳定且高速的传输状态并节省了一半以上的频谱分配时间。 In order to solve the problem that the traditional power control algorithm limits the transmit power of secondary users and affects its QoS( Quality of Service), a multi-person Rubinstein game spectrum allocation algorithm based on power control is proposed. The proposed algorithm reduces the transmit power of cognitive users by Neton’s iterative formula and obtains the corresponding link quality according to the interference between users. The mapping between the discount factor of the game model and the link quality of the user is used to adjust the cognitive based on the link quality. The user sub-game sequence makes the total transmission rate of the network reach a relatively stable state. Simulations show that when the multiple secondary users share the spectrum under the same channel, the multi-person Rubinstein game algorithm significantly improves the total transmission rate of the system, and makes the system in a stable and high-speed transmission state,and also saves more than half of the spectrum allocation time.
作者 何继爱 徐磊 宋宇霄 HE Ji-ai;XU Lei;SONG Yu-xiao(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《测控技术》 2019年第5期113-117,共5页 Measurement & Control Technology
基金 国家自然科学基金(61561031 6156202058)
关键词 认知无线电 Rubinstein博弈 频谱共享 速率总收益 cognitive radio Rubinstein game spectrum sharing total rate of return
  • 相关文献

参考文献9

二级参考文献73

  • 1刘维.精通Matlab与C/C++混合程序设计[M].北京:北京航空航天大学出版社,2008.
  • 2Federal Communications Commission. Spectrum Policy Task Force. Rep. ET Docket 02-135[R]. 2002. http:// www. fcc. gov.
  • 3HAYKIN S. Cognitive Radio: Brain-empowered Wireless Communications[J].IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 4NIYATO D, HOSSAIN E. Competitive Spectrum Sharing in Cognitive Radio Networks: A Dynamic Game Approach [J]. IEEE Transactions on Wireless Communications, 2008, 7(7): 2651-2660.
  • 5ETKIN R, PAREKH A, TSE D. Spectrum Sharing for Unlicensed Bands[J]. IEEE Journal on Selected Areas in Communications, 2007, 5(3): 517-528.
  • 6WANG B, JI Z, LIU K J R. Self-learning Repeated Game Framework for Distributed Primaryprioritized Dynamic Spectrum Access[C]// Proceedings of IEEE SECON2007. San Diego: IEEE Press, 2007: 631-638.
  • 7DUBEY P. Inefficiency of Nash Equilibria[J]. Mathematics of Operations Research, 1986, 11(1): 1-8.
  • 8MARCUS M J. CR: Cooperative Radioor Confrontational Radio[C] // Proceedings of IEEE DySPAN 2007, Dublin: IEEE Press, 2007: 208-211.
  • 9JUAN E S. Cooperative Game Theory and Non-Convex Optimization for Distributed Spectrum Sharing[D]. Virginia: Virginia Polytechnic Institute and State University, 2007.
  • 10XING Y, CHANDRAMOULI R,CORDEIRO C M. Price Dynarnicsin Competitive Agile Spectrum Access Markets [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(3):613-621.

共引文献42

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部