期刊文献+

基于阶跃响应曲线特征的线性系统辨识方法研究 被引量:6

Study on Identification Method for Linear System Based on the Feature of Step Response Curve
下载PDF
导出
摘要 针对阶跃响应法建模的局限性,提出一种基于阶跃响应曲线特征的线性系统辨识方法。高阶线性系统可由多个一阶与二阶典型环节并联而成,分析典型环节各参数对曲线形状影响的规律,并依据其调整各参数值,以典型环节并联模型的拟合曲线逼近实际的阶跃响应曲线,从而得到系统的传递函数。另外,借助Matlab图形用户界面(GUI)平台,开发了辨识软件以验证该算法的正确性与可行性,实验结果表明,该方法辨识精度高,对于复杂控制系统建模具有一定的参考性。 In order to solve the limitations of step response identification modeling, an identification method is presented for linear system based on the feature of step response curve. According to the theory that the typical first-order and second-order components can comprise a high order linear system in parallel form, the influences of parameters on the shape of the curve are analyzed. These laws are used to adjust the values of the parameters in the typical components to make the fitted curve close to the actual step response curve, and the transfer function is obtained. In order to validate the feasibility and correctness of the algorithm, an identification software is developed with the help of Matlab Graphical User Interface( Matlab GUI). The simulation results show that this method is reliable and accurate, and has certain reference value for the modeling of complicated control system.
作者 吴相甫 徐健 WU Xiang-fu;XU Jian(Aviation Industry Aircraft Strength Research Institute,Xi' an 710065,China)
出处 《测控技术》 2019年第5期127-133,139,共8页 Measurement & Control Technology
关键词 阶跃响应曲线 线性系统 系统辨识 MATLAB GUI step response curve linear system system identification Matlab GUI
  • 相关文献

参考文献10

二级参考文献144

  • 1张立群,邵惠鹤.面向控制器设计的多变量系统辨识实验信号[J].控制与决策,2004,19(7):824-826. 被引量:2
  • 2张立群,邵惠鹤.基于内模控制的系统辨识实验信号设计[J].系统工程与电子技术,2004,26(10):1464-1465. 被引量:1
  • 3蔡卫菊,张颖超.基于T-S模糊模型的神经网络的系统辨识[J].微计算机信息,2006(01Z):176-178. 被引量:10
  • 4Akcay H, Heuberger P. A frequency-domain iterative identifi-cation algorithm using general orthonormal basis functions[J]. Automatica, 2001, 37(5) : 663 - 674.
  • 5Date P, Lanzon A. A combined iterative scheme for identifica tion and control redesigns[J].International Journal of Adaptive Control and Signal Processing, 2004, 18(8) : 629 - 644.
  • 6Hildebrand R, Lecchini A, Solari G, et aI. Prefiltering in iterative feedback tuning: optimization of the prefilter for accuracy [J]. IEEE Trans. on Automatic Control, 2004, 49(10) : 1801 - 1805.
  • 7Bombois X, Gevers M, Scorletti G, et al. Robustness analysis tools for an uncertainty set obtained by prediction error identification[J].Automatica, 2001, 37: 1629-1636.
  • 8Zhou K, Doyle J C, Glover K. Robust and optimal control [M]. Prentice-Hall, New Jersey, USA, 1996.
  • 9Gevers M, Bombois X, Codrons B. Model validation for control and controller validation in a prediction error identi cation framework Part I:theory[J].Automatica, 2003, 39 (3):403-427.
  • 10Sippe D. From data to performance-system identification uncertainty and robust control design[D]. Netherlands: Delft Uni versity of Technology, 2006.

共引文献55

同被引文献62

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部