期刊文献+

V-SMCG算法对起伏月面异常回波的定量研究

Quantitative study of the anomalous scattering echoes of rough lunar surface by V-SMCG algorithm
原文传递
导出
摘要 本文基于月面石块的分布模型和概率分布函数,采用蒙特卡洛反函数法建立随机分布石块的月面几何模型.基于Maxwell积分方程发展了矢量稀疏矩阵规范网格法(Vector Sparse Matrix Canonical Grid, V-SMCG)矩量法的求解过程,数值仿真了不同月面几何的全极化复散射回波,并根据Mini-RF雷达观测配置计算回波圆极化比(Circular Polarization Ratio, CPR).仿真结果表明:月面随机分布石块引起月面几何起伏粗糙度的增加,多次散射明显增强了雷达后向回波,并使得CPR值出现大于1的情况,尤其是大于波长尺度的石块会使得CPR值远远大于1. Based on the probability distribution function of the stones, the model of the stones is established using the inverse function method of Monte Carlo Method. Then the full polarization radar echo is calculated according to the Maxwell integration equations, using method of moment accelerated with V-SMCG algorithm. Then the circular polarization ratio (CPR) is calculated according to Mini-RF radar observation configuration. The simulation results show that random stones distribution causes surface roughness and backscattering echo enhancement. Moreover, the multiple scattering of stones can cause anomalous CPR in radar echoes, especially for the stones with size larger than wavelength.
作者 赵子豪 叶红霞 ZHAO ZiHao;YE HongXia(Key Laboratory for Information Science of Electromagnetic Waves,Fudan University,Shanghai 200433,China;Key Laboratory of Lunar and Deep Space Exploration,Chinese Academy of Sciences,Beijing 100101,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2019年第6期88-96,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:61871424) 中国科学院月球与深空探测重点实验室开放课题(编号:LDSE201706)资助项目
关键词 月球石块 稀疏矩阵规范网格法 圆极化比 lunar surface stones sparse matrix canonical grid circular polarization ratio
  • 相关文献

参考文献1

二级参考文献10

  • 1Sarkar T K, Arvas E and Ponnapalli S. Electromagnetic scattering from dielectric bodies[ J ]. IEEE Trans. Antennas Propagation,1989, 37:673-676.
  • 2Zhuang Y, Wu K, Wu C, et al. A combined full-wave CG-FRF method for rigorous analysis of large microstrip antenna array [ J ]. IEEE Trans. Antennas Propagation 1996, 44: 102-109.
  • 3Zhao J S, Chew W C, Lu C C, et al. Thinstratified medium fast-multipole algorithm for solving microstrip structures [ J ]. IEEE Trans.Microwave Theory Tech. 1998, 46:395-403.
  • 4Bleszynski E, Bleszynski M, and Jaroszewics T. A fast integral-equation solver for electromagnetic scattering problems [ J ]. IEEE AP-S,.Seattle,WA, 1994, I. 416-419.
  • 5Tsang L and Chan C H, et al. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method [ J ]. IEEE Trans. Antennas Propagation, 1995,43:851-859.
  • 6Chan C H and Tsang L. A Sparse-Matrix canonical-grid method for scattering by many scatterers[ J ]. Microwave and Optical Technology Letters, 1995:114-118.
  • 7Chan C H, Lin C M, Tsang L, et al. A sparsematrix/canonical-grid method for analyzing microstrip structures [ J ]. IEICE Trans. Electron. , 1997, E80-C( 11 ) : 1354-1359.
  • 8Li S Q, Yu Y, Chan C H, et al. A sparse-matrix/canonical grid method for analyzing densely packed interconnects [ J ]. IEEE Trans. , Microwave Theory Tech. 2001, 49:1221-1228.
  • 9Tsang L, Kong J A, Ding K H, et al. Scattering of Electromagnetic Waves: Numerical Simulations [ M ]. New York : John Wiley &Sons,Inc. 2001.
  • 10Livesay D E and Chen K M. Electromagnetic wields induced inside arbitrarily shaped biological bodies[ J]. IEEE Trans. Microwave Theory Tech. , 1974, 22:1273-1280.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部